A New Representation of TAST Codes

A simple and general form of threaded algebraic space-time (TAST) codes and constellations for arbitrary numbers of transmit and receive antennas and arbitrary input alphabets is given and analyzed. This new form gives revealing insights on the TAST framework, elucidates the connection between space-time constellation expansion and the peak-to-average power ratio (PAR), and establishes the equivalence between a certain class of TAST constellations and constellations derived from division algebras

[1]  Pranav Dayal,et al.  Maximal diversity algebraic space-time codes with low peak-to-mean power ratio , 2005, IEEE Transactions on Information Theory.

[2]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[3]  François Sigrist Sphere packing , 1983 .

[4]  G. David Forney,et al.  Multidimensional constellations. II. Voronoi constellations , 1989, IEEE J. Sel. Areas Commun..

[5]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[6]  Raymond Knopp,et al.  On coding for block fading channels , 2000, IEEE Trans. Inf. Theory.

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  John G. Proakis,et al.  Digital Communications , 1983 .

[9]  Mohamed Oussama Damen,et al.  Universal space-time coding , 2003, IEEE Trans. Inf. Theory.

[10]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[11]  Jean-Claude Belfiore,et al.  Algebraic tools to build modulation schemes for fading channels , 1997, IEEE Trans. Inf. Theory.

[12]  Hesham El Gamal,et al.  On the design of algebraic space-time codes for MIMO block-fading channels , 2003, IEEE Trans. Inf. Theory.

[13]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[14]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[15]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[16]  Lee-Fang Wei,et al.  Trellis-coded modulation with multidimensional constellations , 1987, IEEE Trans. Inf. Theory.

[17]  Norman C. Beaulieu,et al.  Linear threaded algebraic space-time constellations , 2003, IEEE Trans. Inf. Theory.

[18]  Karim Abed-Meraim,et al.  Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.

[19]  S. Lang Algebraic Number Theory , 1971 .

[20]  Emanuele Viterbo,et al.  The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  Norman C. Beaulieu,et al.  Systematic construction of full diversity algebraic constellations , 2003, IEEE Trans. Inf. Theory.

[22]  G. David Forney,et al.  Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..

[23]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[24]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.