Ground and excited states of retinal schiff base chromophores by multiconfigurational perturbation theory.

We have studied the wavelength dependence of retinal Schiff base absorbencies on the protonation state of the chromophore at the multiconfigurational level of theory using second order perturbation theory (CASPT2) within an atomic natural orbital basis set on MP2 optimized geometries. Quantitative agreement between calculated and experimental absorption maxima was obtained for protonated and deprotonated Schiff bases of all-trans- and 11-cis-retinal and intermediate states covering a wavelength range from 610 to 353 nm. These data will be useful as reference points for the calibration of more approximate schemes.

[1]  Stefan Haacke,et al.  Absorption of schiff-base retinal chromophores in vacuo. , 2005, Journal of the American Chemical Society.

[2]  V. Buss,et al.  Origin and consequences of steric strain in the rhodopsin binding pocket. , 2006, Biochemistry.

[3]  J. Spudich,et al.  Molecular mechanism of photosignaling by archaeal sensory rhodopsins. , 1997, Annual review of biophysics and biomolecular structure.

[4]  Minoru Sakurai,et al.  Study of the Opsin Shift of Bacteriorhodopsin: Insight from QM/MM Calculations with Electronic Polarization Effects of the Protein Environment , 2001 .

[5]  Barry Honig,et al.  An external point-charge model for bacteriorhodopsin to account for its purple color , 1980 .

[6]  R. Becker,et al.  Visual pigments. IV. Experimental and theoretical investigations of the absorption spectra of retinal Schiff bases and retinals. , 1974, Journal of the American Chemical Society.

[7]  B. Honig,et al.  Visual-pigment spectra: implications of the protonation of the retinal Schiff base. , 1976, Biochemistry.

[8]  W. Kühlbrandt,et al.  Bacteriorhodopsin — the movie , 2000, Nature.

[9]  J. Lugtenburg,et al.  S1 AND S2 STATES OF APO- AND DIAPOCAROTENES , 1999 .

[10]  R. Birge,et al.  Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. , 1990, Biochimica et biophysica acta.

[11]  H. Shichi Biochemistry of vision , 1983 .

[12]  B. Palmer,et al.  OPTICAL STUDIES OF A SIMPLE POLYENE SCHIFF BASE: LOW-LYING ELECTRONIC LEVELS IN THE FREE, HYDROGEN-BONDED, AND PROTONATED SPECIES , 1982 .

[13]  V. Buss,et al.  How the Counterion Affects Ground- and Excited-State Properties of the Rhodopsin Chromophore , 2004 .

[14]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[15]  Hideo Suzuki,et al.  Theory of the Optical Property of Visual Pigment , 1974 .

[16]  L. H. Andersen,et al.  S1 and S2 excited States of gas-phase Schiff-base retinal chromophores. , 2006, Physical review letters.

[17]  L. P. Murray,et al.  The nature of the primary photochemical events in rhodopsin and isorhodopsin. , 1988, Biophysical journal.

[18]  P. Tavan,et al.  Wavelength regulation in bacteriorhodopsin and halorhodopsin: A Pariser–Parr–Pople multireference double excitation configuration interaction study of retinal dyes , 1988 .

[19]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[20]  Ramkumar Rajamani,et al.  Combined QM/MM study of the opsin shift in bacteriorhodopsin , 2002, J. Comput. Chem..

[21]  Frank Terstegen,et al.  Influence of DFT-calculated electron correlation on energies and geometries of retinals and of retinal derivatives related to the bacteriorhodopsin and rhodopsin chromophores , 1998 .

[22]  Hiroshi Nakatsuji,et al.  Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study , 2005 .

[23]  Klaus Schulten,et al.  Structural determinants of spectral tuning in retinal proteins - Bacteriorhodopsin vs sensory rhodopsin II , 2001 .

[24]  Frank Terstegen,et al.  All-trans- and 11-cis-retinal, their N-methyl Schiff base and N-methyl protonated Schiff base derivatives: a comparative ab initio study , 1996 .

[25]  V. Buss,et al.  Quantum mechanical studies on the crystallographic model of bathorhodopsin. , 2006, Angewandte Chemie.

[26]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[27]  P. E. Blatz,et al.  Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. , 1972, Biochemistry.

[28]  H Luecke,et al.  Molecular mechanism of spectral tuning in sensory rhodopsin II. , 2001, Biochemistry.

[29]  Massimo Olivucci,et al.  Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level , 2004, Proceedings of the National Academy of Sciences of the United States of America.