1,3-Dipolar cycloadditions with azomethine ylide species generated from aminocyclopropanes

[1]  V. Singh,et al.  (R)-DM-SEGPHOS-Ag(I)-Catalyzed Enantioselective Synthesis of Pyrrolidines and Pyrrolizidines via (1,3)- and Double (1,3)-Dipolar Cycloaddition Reactions. , 2018, The Journal of organic chemistry.

[2]  H. Döndaş,et al.  Current Trends towards the Synthesis of Bioactive Heterocycles and Natural Products Using 1,3-Dipolar Cycloadditions (1,3-DC) with Azomethine Ylides , 2017, Synthesis.

[3]  J. Sansano,et al.  Diastereoselective [3 + 2] vs [4 + 2] Cycloadditions of Nitroprolinates with α,β-Unsaturated Aldehydes and Electrophilic Alkenes: An Example of Total Periselectivity. , 2017, The Journal of organic chemistry.

[4]  J. Robertson,et al.  Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis. , 2017, Natural product reports.

[5]  J. H. Ryan,et al.  1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides with Carbonyl Dipolarophiles Yielding Oxazolidine Derivatives , 2016, Molecules.

[6]  Ju Xie,et al.  Molecular diversity of the three-component reaction of α-amino acids, dialkyl acetylenedicarboxylates and N-substituted maleimides. , 2016, Organic & biomolecular chemistry.

[7]  V. Sridharan,et al.  Synthesis of oxetane/azetidine containing spirocycles via the 1,3-dipolar cycloaddition reaction , 2016 .

[8]  K. Tsuge,et al.  Synthesis of Substituted Pyrrolo[2,1-a]isoquinolines by Gold-Catalyzed Domino Cyclization of Alkynyl Iminoesters , 2016, Synthesis.

[9]  A. Padwa,et al.  Recent Advances of 1,3-Dipolar Cycloaddition Chemistry for Alkaloid Synthesis , 2016 .

[10]  D. Seidel The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations , 2015, Accounts of chemical research.

[11]  H. Waldmann,et al.  Catalytic Enantioselective 1,3-Dipolar Cycloadditions of Azomethine Ylides for Biology-Oriented Synthesis , 2014, Accounts of chemical research.

[12]  Bo-ping Ye,et al.  Penibruguieramine A, a novel pyrrolizidine alkaloid from the endophytic fungus Penicillium sp. GD6 associated with Chinese mangrove Bruguiera gymnorrhiza. , 2014, Organic letters.

[13]  Paul Knochel,et al.  Comprehensive organic synthesis , 2014 .

[14]  J. Robertson,et al.  Pyrrolizidine alkaloids. , 2014, Natural product reports.

[15]  D. Maiti,et al.  Synthetically useful noncatalytic strategy: a stereocontrolled rapid cyclization of a three component system to afford hexahydropyrrolizines. , 2013, Chemical communications.

[16]  P. Retailleau,et al.  Synthesis of polycyclic aminocyclobutane systems by the rearrangement of N-(ortho-vinylphenyl) 2-azabicyclo[3.1.0]hexane derivatives. , 2013, Chemistry.

[17]  A. de Meijere,et al.  Cyclopropylamines from N,N-dialkylcarboxamides and Grignard reagents in the presence of titanium tetraisopropoxide or methyltitanium triisopropoxide. , 2010, Chemistry.

[18]  Y. Six,et al.  Synthetic transformations mediated by the combination of titanium(IV) alkoxides and grignard reagents: selectivity issues and recent applications. Part 1: reactions of carbonyl derivatives and nitriles , 2010 .

[19]  J. Yue,et al.  Alkaloids from the twigs of Daphniphyllum calycinum. , 2008, Journal of natural products.

[20]  S. Gadre,et al.  Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. , 2006, Chemical reviews.

[21]  T. P. Melo Conjugated Azomethine Ylides , 2006 .

[22]  Nouara Ouhamou,et al.  The Intramolecular Aromatic Electrophilic Substitution of Aminocyclopropanes Prepared by the Kulinkovich–de Meijere Reaction , 2005 .

[23]  I. Coldham,et al.  Intramolecular dipolar cycloaddition reactions of azomethine ylides. , 2005, Chemical reviews.

[24]  D. Pei,et al.  Macrocyclic inhibitors for peptide deformylase: a structure-activity relationship study of the ring size. , 2004, Journal of medicinal chemistry.

[25]  Y. Six,et al.  The Formal [3+2+1] Cyclisation of Cyclopropylamines with Carboxylic Anhydrides: A Quick Access to Polysubstituted 2,3,3a,4‐Tetrahydro6(5H)‐indolone Ring Systems , 2004 .

[26]  A. Meijere,et al.  Titanium-mediated syntheses of cyclopropylamines , 2004 .

[27]  H. Elsohly,et al.  New cell-cell adhesion inhibitors from Streptomyces sp. UMA-044. , 2003, The Journal of antibiotics.

[28]  Y. Six,et al.  Titanium‐Mediated Carboxylation of Alkynes With Carbon Dioxide , 2003 .

[29]  I. Marek Titanium and Zirconium in Organic Synthesis , 2002 .

[30]  P. Bertus,et al.  Ti(II)-mediated conversion of alpha-heterosubstituted (O, N, S) nitriles to functionalized cyclopropylamines. Effect of chelation on the cyclopropanation step. , 2002, The Journal of organic chemistry.

[31]  A. Meijere,et al.  1,n-Dicarbanionic Titanium Intermediates from Monocarbanionic Organometallics and Their Application in Organic Synthesis , 2000 .

[32]  Robin K. Lammi,et al.  Reactivity of Acyl Derivatives toward Dialkoxytitanacyclopropane. , 1997, The Journal of organic chemistry.

[33]  Jinhwa Lee,et al.  FACILE PREPARATION OF CYCLOPROPYLAMINES FROM CARBOXAMIDES , 1997 .

[34]  A. Meijere,et al.  A Versatile New Preparation of Cyclopropylamines from Acid Dialkylamides , 1996 .

[35]  P. Garner,et al.  Complex pyrrolidines via a tandem michael reaction/1,3-dipolar cycloaddition sequence. A novel method for the generation of unsymmetrical azomethine ylides , 1990 .

[36]  R. Grigg,et al.  X=Y-ZH Systems as potential 1.3-dipoles. part 16. cyclopropyl substituted azomethine ylides as mechanistic probes in 1.3-dipolar cycloaddition reactions , 1988 .

[37]  A. Padwa 1,3-Dipolar Cycloaddition Chemistry , 1984 .

[38]  P. Confalone,et al.  Intramolecular [3 + 2] cycloaddition routes to carbon-bridged dibenzocycloheptanes and dibenzazepines , 1983 .

[39]  F. Kröhnke Über Enol‐Betaine (I. Mitteil.) , 1935 .