ParceLiNGAM: A Causal Ordering Method Robust Against Latent Confounders
暂无分享,去创建一个
Aapo Hyvärinen | Takashi Washio | Shohei Shimizu | Tatsuya Tashiro | Shohei Shimizu | T. Washio | Aapo Hyvärinen | Tatsuya Tashiro
[1] Aapo Hyvärinen,et al. Estimation of Causal Orders in a Linear Non-Gaussian Acyclic Model: A Method Robust against Latent Confounders , 2012, ICANN.
[2] Aapo Hyvärinen,et al. DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model , 2011, J. Mach. Learn. Res..
[3] E. Lukács,et al. A Property of the Normal Distribution , 1954 .
[4] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[5] Karl J. Friston,et al. Dynamic causal modelling , 2003, NeuroImage.
[6] Jean-François Cardoso,et al. Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..
[7] Mark W. Woolrich,et al. Network modelling methods for FMRI , 2011, NeuroImage.
[8] M. Kendall. Statistical Methods for Research Workers , 1937, Nature.
[9] Bernhard Schölkopf,et al. Nonlinear causal discovery with additive noise models , 2008, NIPS.
[10] Kenneth A. Bollen,et al. Structural Equations with Latent Variables , 1989 .
[11] Patrik O. Hoyer,et al. Estimation of causal effects using linear non-Gaussian causal models with hidden variables , 2008, Int. J. Approx. Reason..
[12] Tom Burr,et al. Causation, Prediction, and Search , 2003, Technometrics.
[13] J. Pearl. Causal diagrams for empirical research , 1995 .
[14] Le Song,et al. A Kernel Statistical Test of Independence , 2007, NIPS.
[15] John W. Tukey,et al. Statistical Methods for Research Workers , 1930, Nature.
[16] G. Darmois,et al. Analyse générale des liaisons stochastiques: etude particulière de l'analyse factorielle linéaire , 1953 .
[17] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[18] Michael I. Jordan,et al. Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..
[19] Zhitang Chen,et al. Causality in Linear Nongaussian Acyclic Models in the Presence of Latent Gaussian Confounders , 2013, Neural Computation.
[20] P. Spirtes,et al. Causation, Prediction, and Search, 2nd Edition , 2001 .
[21] Shohei Shimizu,et al. Lingam: Non-Gaussian Methods for Estimating Causal Structures , 2014, Behaviormetrika.
[22] Terrence J. Sejnowski,et al. Learning Overcomplete Representations , 2000, Neural Computation.
[23] Seungjin Choi,et al. Independent Component Analysis , 2009, Handbook of Natural Computing.
[24] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[25] Aapo Hyvärinen,et al. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models , 2013, J. Mach. Learn. Res..
[26] Bernhard Schölkopf,et al. Regression by dependence minimization and its application to causal inference in additive noise models , 2009, ICML '09.
[27] Patrik O. Hoyer,et al. Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models , 2010, JSAI-isAI Workshops.