ParceLiNGAM: A Causal Ordering Method Robust Against Latent Confounders

We consider learning a causal ordering of variables in a linear nongaussian acyclic model called LiNGAM. Several methods have been shown to consistently estimate a causal ordering assuming that all the model assumptions are correct. But the estimation results could be distorted if some assumptions are violated. In this letter, we propose a new algorithm for learning causal orders that is robust against one typical violation of the model assumptions: latent confounders. The key idea is to detect latent confounders by testing independence between estimated external influences and find subsets (parcels) that include variables unaffected by latent confounders. We demonstrate the effectiveness of our method using artificial data and simulated brain imaging data.

[1]  Aapo Hyvärinen,et al.  Estimation of Causal Orders in a Linear Non-Gaussian Acyclic Model: A Method Robust against Latent Confounders , 2012, ICANN.

[2]  Aapo Hyvärinen,et al.  DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model , 2011, J. Mach. Learn. Res..

[3]  E. Lukács,et al.  A Property of the Normal Distribution , 1954 .

[4]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[5]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[6]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[7]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[8]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[9]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[10]  Kenneth A. Bollen,et al.  Structural Equations with Latent Variables , 1989 .

[11]  Patrik O. Hoyer,et al.  Estimation of causal effects using linear non-Gaussian causal models with hidden variables , 2008, Int. J. Approx. Reason..

[12]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[13]  J. Pearl Causal diagrams for empirical research , 1995 .

[14]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[15]  John W. Tukey,et al.  Statistical Methods for Research Workers , 1930, Nature.

[16]  G. Darmois,et al.  Analyse générale des liaisons stochastiques: etude particulière de l'analyse factorielle linéaire , 1953 .

[17]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[18]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[19]  Zhitang Chen,et al.  Causality in Linear Nongaussian Acyclic Models in the Presence of Latent Gaussian Confounders , 2013, Neural Computation.

[20]  P. Spirtes,et al.  Causation, Prediction, and Search, 2nd Edition , 2001 .

[21]  Shohei Shimizu,et al.  Lingam: Non-Gaussian Methods for Estimating Causal Structures , 2014, Behaviormetrika.

[22]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[23]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[24]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[25]  Aapo Hyvärinen,et al.  Pairwise likelihood ratios for estimation of non-Gaussian structural equation models , 2013, J. Mach. Learn. Res..

[26]  Bernhard Schölkopf,et al.  Regression by dependence minimization and its application to causal inference in additive noise models , 2009, ICML '09.

[27]  Patrik O. Hoyer,et al.  Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models , 2010, JSAI-isAI Workshops.