Misclassification Bias in Areal Estimates

In addition to thematic maps, remote sensing provides estimates of area in different thematic categories. Areal estimates are frequently used for resource inventories, management planning, and assessment analyses. Misclassification causes bias in these statistical areal estimates. For example, if a small percentage of a common cover type is misclassified as a rare cover type, then the area occupied by the rare type can be severely overestimated. Many categories are rare in detailed classification systems. I present an informal method to anticipate the approximate magnitude of this bias in statistical areal estimates, before a remote sensing study is conducted. If the anticipated magnitude is unacceptable, then statistical calibration methods should be used to produce unbiased areal estimates. I then discuss existing statistical methods that calibrate for misclassification bias with a sample of reference plots.

[1]  M. Brilly,et al.  Automated grid element ordering for GIS-based overland flow modeling , 1992 .

[2]  V. K. Shettigara,et al.  A generalized component substitution technique for spatial enhancement of multispectral images using , 1992 .

[3]  P. Gong,et al.  Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe : A case study , 1992 .

[4]  C. Fraser Photogrammetric measurement to one part in a million , 1992 .

[5]  A. M. Hay,et al.  The derivation of global estimates from a confusion matrix , 1988 .

[6]  Steven E. Franklin,et al.  A three-stage classifier for remote sensing of mountain environments , 1992 .

[7]  R. Fildes Journal of the Royal Statistical Society (B): Gary K. Grunwald, Adrian E. Raftery and Peter Guttorp, 1993, “Time series of continuous proportions”, 55, 103–116.☆ , 1993 .

[8]  On the Design of Classifiers for Crop Inventories , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Rachel M. Harter,et al.  An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data , 1988 .

[10]  W. Fuller,et al.  Regression Estimation of Crop Acreages With Transformed Landsat Data as Auxiliary Variables , 1987 .

[11]  H. Scheffé A Statistical Theory of Calibration , 1973 .

[12]  C S Fraser,et al.  DIMENSIONAL CHARACTERIZATION OF A LARGE AIRCRAFT STRUCTURE BY PHOTOGRAMMETRY , 1992 .

[13]  Raymond E. Arvidson,et al.  Utility of imaging spectrometry for lithologic mapping in Greenland , 1992 .

[14]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[15]  D. Lanter,et al.  A research paradigm for propagating error in layer-based GIS , 1992 .

[16]  C. Heipke A global approach for least-squares image matching and surface reconstruction in object space , 1992 .

[17]  R. R. Lamacraft,et al.  Calibration of LANDSAT data for sparsely vegetated semi-arid rangelands , 1986 .

[18]  A. Tenenbein A Double Sampling Scheme for Estimating from Misclassified Multinomial Data with Applications to Sampling Inspection , 1972 .

[19]  O. H. Shemdin,et al.  Measuring short surface waves with stereophotography , 1992 .

[20]  C. K. Liew,et al.  Inequality Constrained Least-Squares Estimation , 1976 .

[21]  Richard G. Lathrop,et al.  Landsat Thematic Mapper monitoring of turbid inland water quality , 1992 .

[22]  P. Gong,et al.  Frequency-based contextual classification and gray-level vector reduction for land-use identification , 1992 .

[23]  L. Deng,et al.  Conditional inference in finite population sampling under a calibration model , 1988 .

[24]  T. Toutin,et al.  An integrated method to rectify airborne radar imagery using DEM , 1992 .

[25]  R. Chhikara,et al.  Crop Acreage Estimation Using a Landsat-Based Estimator as an Auxiliary Variable , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[26]  L. Iverson,et al.  A technique for extrapolating and validating forest cover across large regions - Calibrating AVHRR data with TM data , 1989 .

[27]  Jae K. Shim A survey of quadratic programming applications to business and economics , 1983 .

[28]  J. L. Smith,et al.  Using classification error matrices to improve the accuracy of weighted land-cover models , 1987 .

[29]  B. M. Evans,et al.  Accuracy of SPOT digital elevation model and derivatives: utility for Alaska's North slope , 1992 .

[30]  David A. Pyke,et al.  Shrub dieback in a semiarid ecosystem : The integration of remote sensing and geographic information systems for detecting vegetation change , 1992 .

[31]  C. Duguay,et al.  Estimating Surface Reflectance and Albedo from Landsat-5 Thematic Mapper over Rugged Terrain , 1992 .

[32]  Patrick L. Odell,et al.  Estimation in linear models , 1971 .

[33]  C. Fraser,et al.  Variation of distortion within the photographic field , 1992 .

[34]  A. Grassia,et al.  Statistical Precision in the Calibration and Use of Sorting Machines and Other Classifiers , 1982 .

[35]  Frank W. Davis,et al.  Sensitivity of wildlife habitat models to uncertainties in GIS data , 1992 .

[36]  Jeanne B. Etheridge,et al.  AREA ESTIMATION OF CROPS BY DIGITAL ANALYSIS OF LANDSAT DATA. , 1978 .

[37]  K. Thapa,et al.  Accuracy of spatial data used in geographic information systems , 1992 .

[38]  T. M. Lillesand,et al.  Rule-based classification models: flexible integration of satellite imagery and thematic spatial data , 1992 .