The Limitations and Successes of Concurrent Dynamic Multiscale Modeling Methods at the Mesoscale

Dynamic concurrent multiscale modeling methods are reviewed and then analyzed based on their governing equations in terms of consistency in material descriptions between different scales, wave propagation across the numerical interfaces between the different descriptions, and advances in describing defects in the coarse-grained domain. The analysis finds that most methods suffer from the consequences of inconsistent materials descriptions between representations at different scales; a few methods such as Concurrent Atomistic Continuum (CAC), Coupled Atomistic Discrete Dislocation (CADD), and the coupled Extended Finite Element Method (XFEM) are capable of simulating moving defects in the coarse-scale domain to improve practicality and prediction. Application of multiscale simulation to coupled thermal and mechanical problems is showing promise. Mesoscale evolution of defects, largely beyond the reach of conventional atomistic methods, is still beyond the reach of many concurrent multiscale methods.

[1]  Azim Eskandarian,et al.  Atomistic counterpart of micromorphic theory , 2003 .

[2]  Martin T. Dove,et al.  Introduction to Lattice Dynamics: Contents , 1993 .

[3]  Z. Bažant,et al.  SPURIOUS REFLECTION OF ELASTIC WAVES IN NONUNIFORM FINITE ELEMENT GRIDS , 1978 .

[4]  Youping Chen,et al.  Concurrent atomistic–continuum simulation of polycrystalline strontium titanate , 2015 .

[5]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables , 2003 .

[6]  Youping Chen,et al.  Atomistic formulation of a multiscale field theory for nano/micro solids , 2005 .

[7]  Lei Jiang,et al.  Spurious wave reflections at an interface of different physical properties in finite‐element wave solutions , 1991 .

[8]  William A. Curtin,et al.  Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS , 2015 .

[9]  M. Fiddy,et al.  Waves in man-made materials: superlattice to metamaterials , 2014 .

[10]  G. Maugin Generalized Continuum Mechanics: Various Paths , 2013 .

[11]  David L. McDowell,et al.  A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals , 2015 .

[12]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[13]  Youping Chen,et al.  Coarse-graining atomistic dynamics of fracture by finite element method: formulation, parallelization and applications , 2011 .

[14]  Ted Belytschko,et al.  Adaptive atomistic‐to‐continuum modeling of propagating defects , 2012 .

[15]  Gérard A. Maugin,et al.  Generalized Continuum Mechanics: What Do We Mean by That? , 2010 .

[16]  J. Kirkwood The Statistical Mechanical Theory of Transport Processes I. General Theory , 1946 .

[17]  David L. McDowell,et al.  Sub-THz Phonon drag on dislocations by coarse-grained atomistic simulations , 2014 .

[18]  David L. McDowell,et al.  Coarse-grained atomistic simulation of dislocations , 2011 .

[19]  Eric Winsberg Models and Theories at the Nano-scale , 2009 .

[20]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[21]  David L. McDowell,et al.  Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study , 2016 .

[22]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[23]  John L. Sarrao,et al.  From Quanta to the Continuum: Opportunities for Mesoscale Science , 2012 .

[24]  D. McDowell,et al.  Mesh refinement schemes for the concurrent atomistic-continuum method , 2016 .

[25]  Youping Chen,et al.  Edge dislocations bowing out from a row of collinear obstacles in Al , 2016 .

[26]  David L. McDowell,et al.  Coarse-Grained Atomistic Simulations of Dislocations in Al Ni and Cu Crystals. , 2012 .

[27]  R. Jones,et al.  Application of a field-based method to spatially varying thermal transport problems in molecular dynamics , 2010 .

[28]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[29]  Martin Wegener,et al.  Metamaterials Beyond Optics , 2013, Science.

[30]  M. Ortiz,et al.  Dynamic behavior of nano-voids in magnesium under hydrostatic tensile stress , 2016 .

[31]  Eric A Shaner,et al.  Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. , 2011, Nano letters.

[32]  Michael Ortiz,et al.  Atomistic long-term simulation of heat and mass transport , 2014 .

[33]  David L. McDowell,et al.  A concurrent scheme for passing dislocations from atomistic to continuum domains , 2012 .

[34]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[35]  David L. McDowell,et al.  Concurrent atomistic–continuum simulations of dislocation–void interactions in fcc crystals , 2015 .

[36]  A. Isihara,et al.  The Gibbs-Bogoliubov inequality dagger , 1968 .

[37]  Simon R. Phillpot,et al.  Phonon-mediated thermal transport: Confronting theory and microscopic simulation with experiment , 2013 .

[38]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (II). Balance laws , 2003 .

[39]  Timon Rabczuk,et al.  Concurrent multiscale modeling of three dimensional crack and dislocation propagation , 2015, Adv. Eng. Softw..

[40]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[41]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[42]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[43]  Youping Chen,et al.  Coarse-grained simulations of single-crystal silicon , 2009 .

[44]  L E Shilkrot,et al.  Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.

[45]  Dennis M. Kochmann,et al.  Summation rules for a fully nonlocal energy-based quasicontinuum method , 2015 .

[46]  Youping Chen,et al.  Comparing EAM Potentials to Model Slip Transfer of Sequential Mixed Character Dislocations Across Two Symmetric Tilt Grain Boundaries in Ni , 2017 .

[47]  M. Ortiz,et al.  Finite-temperature non-equilibrium quasi-continuum analysis of nanovoid growth in copper at low and high strain rates , 2015 .

[48]  R. Jones,et al.  An atomistic-to-continuum coupling method for heat transfer in solids , 2008 .

[49]  Man-made superlattice and quantum wells: past and future , 2014 .

[50]  Youping Chen Local stress and heat flux in atomistic systems involving three-body forces. , 2006, The Journal of chemical physics.

[51]  Youping Chen,et al.  A COARSE-GRAINED ATOMISTIC METHOD FOR 3D DYNAMIC FRACTURE SIMULATION , 2013 .

[52]  Youping Chen,et al.  Reformulation of microscopic balance equations for multiscale materials modeling. , 2009, The Journal of chemical physics.

[53]  David L. McDowell,et al.  Assessment of atomistic coarse-graining methods , 2011 .

[54]  E. Thomas,et al.  Hypersonic phononic crystals. , 2005, Physical review letters.

[55]  Youping Chen,et al.  Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions , 2017 .

[56]  Youping Chen,et al.  Determining material constants in micromorphic theory through phonon dispersion relations , 2003 .

[57]  Shengfeng Yang,et al.  Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  David L. McDowell,et al.  An analysis of key characteristics of the Frank-Read source process in FCC metals , 2016 .

[59]  Zdeněk P. Bažant,et al.  Spurious reflection of elastic waves in nonuniform meshes of constant and linear strain unite elements , 1982 .

[60]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[61]  G. Maugin Some remarks on generalized continuum mechanics , 2015 .

[62]  C. Kittel Introduction to solid state physics , 1954 .

[63]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .

[64]  Youping Chen,et al.  Coarse-graining atomistic dynamics of brittle fracture by finite element method , 2010 .

[65]  David L. McDowell,et al.  Coarse-grained elastodynamics of fast moving dislocations , 2016 .

[66]  Youping Chen,et al.  Ballistic-diffusive phonon heat transport across grain boundaries , 2017, 1704.08415.

[68]  Youping Chen,et al.  Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic-continuum method , 2012 .

[69]  Ronald E. Miller,et al.  Multiscale modeling of crack initiation and propagation at the nanoscale , 2016 .

[70]  Christoph Ortner,et al.  Atomistic/Continuum Blending with Ghost Force Correction , 2016, SIAM J. Sci. Comput..

[71]  Ted Belytschko,et al.  Conservation properties of the bridging domain method for coupled molecular/continuum dynamics , 2008 .

[72]  A. C. Eringen,et al.  Mechanics of Micromorphic Continua , 1968 .

[73]  Youping Chen,et al.  Effects of phonons on mobility of dislocations and dislocation arrays , 2017 .

[74]  M. Ortiz,et al.  HotQC simulation of nanovoid growth under tension in copper , 2012, International Journal of Fracture.

[75]  T. Isotalo,et al.  Engineering thermal conductance using a two-dimensional phononic crystal , 2014, Nature Communications.

[76]  Richard W. Ziolkowski,et al.  Metamaterials: The early years in the USA , 2014 .

[77]  Martin Maldovan,et al.  Sound and heat revolutions in phononics , 2013, Nature.

[78]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[79]  Youping Chen,et al.  Concurrent Atomistic-Continuum Simulation of Defects in Polyatomic Ionic Materials , 2016 .

[80]  Youping Chen,et al.  Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory , 2009 .

[81]  A. Eskandarian,et al.  Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation , 2003 .