Fully computable a posteriori error bounds for eigenfunctions
暂无分享,去创建一个
[1] Stefano Giani,et al. An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems , 2012 .
[2] N. Lehmann. Beiträge zur numerischen Lösung linearer Eigenwertprobleme. , 1949 .
[3] Carsten Carstensen,et al. Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.
[4] Ricardo G. Durán,et al. A posteriori error estimates for non-conforming approximation of eigenvalue problems , 2012 .
[5] Carsten Carstensen,et al. Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..
[6] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[7] R. Durán,et al. ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .
[8] Mitsuhiro Nakao,et al. Verified numerical computations for multiple and nearly multiple eigenvalues of elliptic operators , 2002 .
[9] Xuefeng Liu,et al. High-Precision Eigenvalue Bound for the Laplacian with Singularities , 2012, ASCM.
[10] Hehu Xie,et al. Fully Computable Error Bounds for Eigenvalue Problem , 2016, 1601.01561.
[11] Volker Mehrmann,et al. Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..
[12] Hehu Xie,et al. A posteriori error estimator for eigenvalue problems by mixed finite element method , 2013 .
[13] R. Baker Kearfott,et al. Introduction to Interval Analysis , 2009 .
[14] Tomas Vejchodsky,et al. Three methods for two-sided bounds of eigenvalues - a comparison , 2016 .
[15] Xuefeng Liu,et al. Optimal estimation for the Fujino–Morley interpolation error constants , 2019, Japan Journal of Industrial and Applied Mathematics.
[16] F. Goerisch,et al. Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichungen , 1985 .
[17] Martin Vohralík,et al. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework , 2018, Numerische Mathematik.
[18] Martin Vohralík,et al. Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters , 2020, Math. Comput..
[19] Henning Behnke,et al. The calculation of guaranteed bounds for eigenvalues using complementary variational principles , 1991, Computing.
[20] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[21] Fumio Kikuchi,et al. Estimation of interpolation error constants for the P0 and P1 triangular finite elements , 2007 .
[22] Yuji Nakatsukasa,et al. Sharp error bounds for Ritz vectors and approximate singular vectors , 2018, Math. Comput..
[23] C. D. Boor,et al. Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .
[24] Xuefeng Liu. A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..
[25] Oskar Maria Baksalary,et al. On angles and distances between subspaces , 2009 .
[26] Hehu Xie,et al. Guaranteed Eigenvalue Bounds for the Steklov Eigenvalue Problem , 2018, SIAM J. Numer. Anal..
[27] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[28] Martin Vohralík,et al. Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations , 2017, SIAM J. Numer. Anal..
[29] Ricardo G. Durán,et al. A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS , 1999 .
[30] Jun Hu,et al. The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.
[31] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[32] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[33] Richard P. Messmer,et al. Upper and lower bounds to eigenvalues , 1969 .
[34] F. Chatelin. Spectral approximation of linear operators , 2011 .
[35] Hehu Xie,et al. Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements , 2018 .
[36] Tomás Vejchodský,et al. Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..
[37] Xuefeng Liu,et al. Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements , 2016, Appl. Math. Comput..
[38] Tomás Vejchodský. Flux reconstructions in the Lehmann-Goerisch method for lower bounds on eigenvalues , 2018, J. Comput. Appl. Math..
[39] Xuefeng Liu,et al. Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..
[40] Fumio Kikuchi,et al. Analysis and Estimation of Error Constants for P0 and P1 Interpolations over Triangular Finite Elements , 2010 .