Fully computable a posteriori error bounds for eigenfunctions

Guaranteed a posteriori estimates on the error of approximate eigenfunctions in both energy and $L^2$ norms are derived for the Laplace eigenvalue problem. The problem of ill-conditioning of eigenfunctions in case of tight clusters and multiple eigenvalues is solved by estimating the directed distance between the spaces of exact and approximate eigenfunctions. The error estimates for approximate eigenfunctions are based on rigorous lower and upper bounds on eigenvalues. Such eigenvalue bounds can be computed for example by the finite element method along with the recently developed explicit error estimation [24] and the Lehmann--Goerisch method. The efficiency of the derived error bounds for eigenfunctions is illustrated by numerical examples.

[1]  Stefano Giani,et al.  An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems , 2012 .

[2]  N. Lehmann Beiträge zur numerischen Lösung linearer Eigenwertprobleme. , 1949 .

[3]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[4]  Ricardo G. Durán,et al.  A posteriori error estimates for non-conforming approximation of eigenvalue problems , 2012 .

[5]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[6]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[7]  R. Durán,et al.  ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .

[8]  Mitsuhiro Nakao,et al.  Verified numerical computations for multiple and nearly multiple eigenvalues of elliptic operators , 2002 .

[9]  Xuefeng Liu,et al.  High-Precision Eigenvalue Bound for the Laplacian with Singularities , 2012, ASCM.

[10]  Hehu Xie,et al.  Fully Computable Error Bounds for Eigenvalue Problem , 2016, 1601.01561.

[11]  Volker Mehrmann,et al.  Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..

[12]  Hehu Xie,et al.  A posteriori error estimator for eigenvalue problems by mixed finite element method , 2013 .

[13]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[14]  Tomas Vejchodsky,et al.  Three methods for two-sided bounds of eigenvalues - a comparison , 2016 .

[15]  Xuefeng Liu,et al.  Optimal estimation for the Fujino–Morley interpolation error constants , 2019, Japan Journal of Industrial and Applied Mathematics.

[16]  F. Goerisch,et al.  Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichungen , 1985 .

[17]  Martin Vohralík,et al.  Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework , 2018, Numerische Mathematik.

[18]  Martin Vohralík,et al.  Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters , 2020, Math. Comput..

[19]  Henning Behnke,et al.  The calculation of guaranteed bounds for eigenvalues using complementary variational principles , 1991, Computing.

[20]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[21]  Fumio Kikuchi,et al.  Estimation of interpolation error constants for the P0 and P1 triangular finite elements , 2007 .

[22]  Yuji Nakatsukasa,et al.  Sharp error bounds for Ritz vectors and approximate singular vectors , 2018, Math. Comput..

[23]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[24]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[25]  Oskar Maria Baksalary,et al.  On angles and distances between subspaces , 2009 .

[26]  Hehu Xie,et al.  Guaranteed Eigenvalue Bounds for the Steklov Eigenvalue Problem , 2018, SIAM J. Numer. Anal..

[27]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[28]  Martin Vohralík,et al.  Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations , 2017, SIAM J. Numer. Anal..

[29]  Ricardo G. Durán,et al.  A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS , 1999 .

[30]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.

[31]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[32]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[33]  Richard P. Messmer,et al.  Upper and lower bounds to eigenvalues , 1969 .

[34]  F. Chatelin Spectral approximation of linear operators , 2011 .

[35]  Hehu Xie,et al.  Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements , 2018 .

[36]  Tomás Vejchodský,et al.  Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..

[37]  Xuefeng Liu,et al.  Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements , 2016, Appl. Math. Comput..

[38]  Tomás Vejchodský Flux reconstructions in the Lehmann-Goerisch method for lower bounds on eigenvalues , 2018, J. Comput. Appl. Math..

[39]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..

[40]  Fumio Kikuchi,et al.  Analysis and Estimation of Error Constants for P0 and P1 Interpolations over Triangular Finite Elements , 2010 .