When is a linear multi-modal system disturbance decoupled?
暂无分享,去创建一个
[1] M. Kanat Camlibel,et al. Disturbance decoupling of switched linear systems , 2010, 49th IEEE Conference on Decision and Control (CDC).
[2] J. M. Schumacher,et al. Complementarity systems in optimization , 2004, Math. Program..
[3] J. Willems,et al. Singular optimal control: A geometric approach , 1986 .
[4] N. Otsuka. Disturbance Decoupling via Dynamic Output Feedback for Switched Linear Systems , 2011 .
[5] Jan Willems,et al. Almost invariant subspaces: An approach to high gain feedback design , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[6] Naohisa Otsuka. Disturbance decoupling with quadratic stability for switched linear systems , 2010, Syst. Control. Lett..
[7] M. Kanat Camlibel,et al. Passivity and complementarity , 2014, Math. Program..
[8] G. Basile,et al. On the observability of linear, time-invariant systems with unknown inputs , 1969 .
[9] Jan C. Willems,et al. Almost disturbance decoupling with internal stability , 1989 .
[10] M. Kanat Camlibel,et al. Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems , 2008, IEEE Transactions on Automatic Control.
[11] Naohisa Otsuka,et al. Disturbance decoupling via measurement feedback for switched linear systems , 2015, Syst. Control. Lett..
[12] A. Morse,et al. Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .
[13] Richard W. Cottle,et al. Linear Complementarity Problem , 2009, Encyclopedia of Optimization.
[14] Johannes Schumacher,et al. An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .
[15] M. K. Camlibel,et al. Disturbance Decoupling for Continuous Piecewise Linear Bimodal Systems , 2014 .
[16] J. Willems. Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .
[17] M. Çamlibel,et al. A New Perspective for Modeling Power Electronics Converters: Complementarity Framework , 2009, IEEE Transactions on Power Electronics.
[18] Harry L. Trentelman,et al. Control theory for linear systems , 2002 .
[19] M. Kanat Camlibel,et al. Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..
[20] Elena Zattoni,et al. Disturbance Decoupling With Closed-Loop Modes Stability in Switched Linear Systems , 2016, IEEE Transactions on Automatic Control.
[21] M. Kanat Camlibel,et al. On Linear Passive Complementarity Systems , 2002, Eur. J. Control.
[22] A. Schaft,et al. Switched networks and complementarity , 2003 .
[23] J. Pearson. Linear multivariable control, a geometric approach , 1977 .
[24] M. Çamlibel,et al. Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems , 2007 .
[25] G. Basile,et al. Controlled and conditioned invariant subspaces in linear system theory , 1969 .
[26] W. P. M. H. Heemels,et al. Linear Complementarity Systems , 2000, SIAM J. Appl. Math..
[27] W. Heemels,et al. On the dynamic analysis of piecewise-linear networks , 2002 .
[28] M. Çamlibel,et al. When Is a Linear Complementarity System Disturbance Decoupled , 2015 .
[29] J. Willems,et al. Disturbance Decoupling by Measurement Feedback with Stability or Pole Placement , 1981 .
[30] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[31] Naohisa Otsuka,et al. The disturbance decoupling problem with stability for switching dynamical systems , 2014, Syst. Control. Lett..
[32] M. Kanat Camlibel,et al. Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems , 2009, SIAM J. Numer. Anal..
[33] G. Basile,et al. Controlled and conditioned invariants in linear system theory , 1992 .
[34] Mireille E. Broucke,et al. Stability and controllability of planar, conewise linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.
[35] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[36] M. Kanat Camlibel,et al. Popov-Belevitch-Hautus type controllability tests for linear complementarity systems , 2007, Syst. Control. Lett..
[37] Elena Zattoni,et al. The disturbance decoupling problem for jumping hybrid systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).
[38] Nahum Shimkin,et al. Nonlinear Control Systems , 2008 .
[39] M. Kanat Camlibel,et al. The disturbance decoupling problem for continuous piecewise affine systems , 2014, 53rd IEEE Conference on Decision and Control.
[40] W. P. M. H. Heemels,et al. The Complementarity Class of Hybrid Dynamical Systems , 2003, Eur. J. Control.
[41] Bernard Brogliato,et al. Observer-based control of linear complementarity systems , 2011 .