When is a linear multi-modal system disturbance decoupled?

In this paper we study the question under which conditions a linear multi-modal system is disturbance decoupled. We establish necessary and sufficient geometric conditions from which the existing results on switched linear systems and conewise linear systems can be recovered as special cases. Also, we apply these conditions to a class of linear complementarity systems in order to obtain a more crisp characterization.

[1]  M. Kanat Camlibel,et al.  Disturbance decoupling of switched linear systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[2]  J. M. Schumacher,et al.  Complementarity systems in optimization , 2004, Math. Program..

[3]  J. Willems,et al.  Singular optimal control: A geometric approach , 1986 .

[4]  N. Otsuka Disturbance Decoupling via Dynamic Output Feedback for Switched Linear Systems , 2011 .

[5]  Jan Willems,et al.  Almost invariant subspaces: An approach to high gain feedback design , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[6]  Naohisa Otsuka Disturbance decoupling with quadratic stability for switched linear systems , 2010, Syst. Control. Lett..

[7]  M. Kanat Camlibel,et al.  Passivity and complementarity , 2014, Math. Program..

[8]  G. Basile,et al.  On the observability of linear, time-invariant systems with unknown inputs , 1969 .

[9]  Jan C. Willems,et al.  Almost disturbance decoupling with internal stability , 1989 .

[10]  M. Kanat Camlibel,et al.  Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems , 2008, IEEE Transactions on Automatic Control.

[11]  Naohisa Otsuka,et al.  Disturbance decoupling via measurement feedback for switched linear systems , 2015, Syst. Control. Lett..

[12]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[13]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[14]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[15]  M. K. Camlibel,et al.  Disturbance Decoupling for Continuous Piecewise Linear Bimodal Systems , 2014 .

[16]  J. Willems Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .

[17]  M. Çamlibel,et al.  A New Perspective for Modeling Power Electronics Converters: Complementarity Framework , 2009, IEEE Transactions on Power Electronics.

[18]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[19]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[20]  Elena Zattoni,et al.  Disturbance Decoupling With Closed-Loop Modes Stability in Switched Linear Systems , 2016, IEEE Transactions on Automatic Control.

[21]  M. Kanat Camlibel,et al.  On Linear Passive Complementarity Systems , 2002, Eur. J. Control.

[22]  A. Schaft,et al.  Switched networks and complementarity , 2003 .

[23]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[24]  M. Çamlibel,et al.  Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems , 2007 .

[25]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[26]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[27]  W. Heemels,et al.  On the dynamic analysis of piecewise-linear networks , 2002 .

[28]  M. Çamlibel,et al.  When Is a Linear Complementarity System Disturbance Decoupled , 2015 .

[29]  J. Willems,et al.  Disturbance Decoupling by Measurement Feedback with Stability or Pole Placement , 1981 .

[30]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[31]  Naohisa Otsuka,et al.  The disturbance decoupling problem with stability for switching dynamical systems , 2014, Syst. Control. Lett..

[32]  M. Kanat Camlibel,et al.  Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems , 2009, SIAM J. Numer. Anal..

[33]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[34]  Mireille E. Broucke,et al.  Stability and controllability of planar, conewise linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[35]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[36]  M. Kanat Camlibel,et al.  Popov-Belevitch-Hautus type controllability tests for linear complementarity systems , 2007, Syst. Control. Lett..

[37]  Elena Zattoni,et al.  The disturbance decoupling problem for jumping hybrid systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[38]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[39]  M. Kanat Camlibel,et al.  The disturbance decoupling problem for continuous piecewise affine systems , 2014, 53rd IEEE Conference on Decision and Control.

[40]  W. P. M. H. Heemels,et al.  The Complementarity Class of Hybrid Dynamical Systems , 2003, Eur. J. Control.

[41]  Bernard Brogliato,et al.  Observer-based control of linear complementarity systems , 2011 .