Many-Objective PSO PID Controller Tuning

Proportional, integral and derivative controller tuning can be a complex problem. There are a significant number of tuning methods for this type of controllers. However, most of these methods are based on a single performance criterion, providing a unique solution representing a certain controller parameters combination. Thus, a broader perspective considering other possible optimal or near optimal solutions regarding alternative or complementary design criteria is not obtained. Tuning PID controllers is addressed in this paper as a many-objective optimization problem. A Multi-Objective Particle Swarm Optimization algorithm is deployed to tune PID controllers considering five design criteria optimized at the same time. Simulation results are presented for a set of four well known plants.

[1]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[2]  Tore Hägglund,et al.  Criteria and Trade-offs in PID Design , 2012 .

[3]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[4]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[5]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[6]  Morimasa Ogawa,et al.  The state of the art in chemical process control in Japan: Good practice and questionnaire survey , 2010 .

[7]  Pierre Borne,et al.  Tuning PID Controller Using Multiobjective Ant Colony Optimization , 2012, Appl. Comput. Intell. Soft Comput..

[8]  António M. Lopes,et al.  MaxiMin MOPSO Design of Parallel Robotic Manipulators , 2011, SOCO.

[9]  Aghil Yousefi-Koma,et al.  Optimal tuning of PID controllers using Artificial Bee Colony algorithm , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[10]  Ajith Abraham,et al.  Inertia Weight strategies in Particle Swarm Optimization , 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing.

[11]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[12]  Tore Hägglund,et al.  Benchmark systems for PID control , 2000 .

[13]  Tore Hägglund,et al.  Automatic Tuning of Pid Controllers , 1988 .

[14]  Peter J. Fleming,et al.  Diversity Management in Evolutionary Many-Objective Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[15]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[16]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[17]  Ashok Kumar,et al.  Neural Networks for Fast Estimation of Social Network Centrality Measures , 2015 .

[18]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[19]  Hisao Ishibuchi,et al.  Behavior of Evolutionary Many-Objective Optimization , 2008, Tenth International Conference on Computer Modeling and Simulation (uksim 2008).

[20]  V. Rajinikanth,et al.  Tuning and Retuning of PID Controller for Unstable Systems Using Evolutionary Algorithm , 2012 .

[21]  Ramon Vilanova,et al.  A look into robustness/performance and servo/regulation issues in PI tuning , 2012 .

[22]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[23]  Claudia-Adina Dragos,et al.  Stable and optimal fuzzy control of a laboratory Antilock Braking System , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[24]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[25]  Aboul Ella Hassanien,et al.  Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011, 6-8 April, 2011, Salamanca, Spain , 2011, SOCO.

[26]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.