Lorentz Transform and Staggered Finite Differences for Advective Acoustics
暂无分享,去创建一个
Isabelle Terrasse | Eric Duceau | Franccois Dubois | F. Dubois | I. Terrasse | Eric Duceau | Frédéric Maréchal | Fr'ed'eric Marechal
[1] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[2] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[3] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[4] Douglas K. Lilly. Introduction to “Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion , 1997 .
[5] A. Bayliss,et al. Radiation boundary conditions for wave-like equations , 1980 .
[6] Francis Collino. Boundary Conditions and Layer technique for the Simulation of Electromagnetic Waves above a Lossy Medium , 1995 .
[7] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[8] P. Joly,et al. Une nouvelle condition transparente d'ordre 2 pour les equations de Maxwell en dimension 3 , 1989 .
[9] R. J. Astley,et al. A three-dimensional boundary element scheme for acoustic radiation in low mach number flows , 1986 .
[10] L. Trefethen,et al. Well-Posedness of one-way wave equations and absorbing boundary conditions , 1986 .
[11] R. J. Joseph,et al. Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .
[12] D. Gottlieb,et al. Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .
[13] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[14] N. S. Barnett,et al. Private communication , 1969 .
[15] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[16] F. Hu. On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer , 1995 .
[17] S. Orszag,et al. Approximation of radiation boundary conditions , 1981 .