Lorentz Transform and Staggered Finite Differences for Advective Acoustics

We study acoustic wave propagation in a uniform stationary flow. We develop a method founded on the Lorentz transform and a hypothesis of irrotationality of the acoustic perturbation. After a transformation of the space-time and of the unknown fields, we derive a system of partial differential equations that eliminates the external flow and deals with the classical case of non advective acoustics. A sequel of the analysis is a new set of perfectly matched layers equations in the spirit of the work of Berenger and Collino. The numerical implementation of the previous ideas is presented with the finite differences method HaWAY on cartesian staggered grids. Relevant numerical tests are proposed.

[1]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[2]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[3]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[4]  Douglas K. Lilly Introduction to “Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion , 1997 .

[5]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[6]  Francis Collino Boundary Conditions and Layer technique for the Simulation of Electromagnetic Waves above a Lossy Medium , 1995 .

[7]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[8]  P. Joly,et al.  Une nouvelle condition transparente d'ordre 2 pour les equations de Maxwell en dimension 3 , 1989 .

[9]  R. J. Astley,et al.  A three-dimensional boundary element scheme for acoustic radiation in low mach number flows , 1986 .

[10]  L. Trefethen,et al.  Well-Posedness of one-way wave equations and absorbing boundary conditions , 1986 .

[11]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[12]  D. Gottlieb,et al.  Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .

[13]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[14]  N. S. Barnett,et al.  Private communication , 1969 .

[15]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[16]  F. Hu On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer , 1995 .

[17]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .