Chinese metaphor sentiment analysis based on attention-based LSTM

The metaphor is a kind of frequently used figurative language. Metaphor computing is helpful in many natural language processing tasks, such as opinion mining, discourse understanding, and dialogue system. This article presents a Chinese metaphor sentiment analysis approach based on an attention-based Long Short-Term Memory (LSTM) network. Our hypothesis is that the target and the context are important in metaphor sentiment analysis, and their interaction provides reliable sentiment-related classification features. The experimental results agree with our hypothesis and justify the effectiveness of the model.

[1]  Petr Sojka,et al.  Gensim -- Statistical Semantics in Python , 2011 .

[2]  Adele E. Goldberg,et al.  Metaphorical Sentences Are More Emotionally Engaging than Their Literal Counterparts , 2014, Journal of Cognitive Neuroscience.

[3]  Min Yang,et al.  Attention Based LSTM for Target Dependent Sentiment Classification , 2017, AAAI.

[4]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[5]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[6]  Li Zhang,et al.  Metaphor Interpretation and Context-based Affect Detection , 2010, COLING.

[7]  Véronique Hoste,et al.  LT3: Sentiment Analysis of Figurative Tweets: piece of cake #NotReally , 2015, SemEval@NAACL-HLT.

[8]  Xiaojun Wan,et al.  Attention-based LSTM Network for Cross-Lingual Sentiment Classification , 2016, EMNLP.

[9]  Ying Zhang,et al.  Online News Emotion Prediction with Bidirectional LSTM , 2016, WAIM.

[10]  Xin Wang,et al.  Predicting Polarities of Tweets by Composing Word Embeddings with Long Short-Term Memory , 2015, ACL.

[11]  Chang Su,et al.  Latent semantic similarity based interpretation of Chinese metaphors , 2016, Eng. Appl. Artif. Intell..

[12]  Paolo Rosso,et al.  SemEval-2015 Task 11: Sentiment Analysis of Figurative Language in Twitter , 2015, *SEMEVAL.

[13]  Phil Blunsom,et al.  Teaching Machines to Read and Comprehend , 2015, NIPS.

[14]  Li Zhang,et al.  Towards a Semantic-Based Approach for Affect and Metaphor Detection , 2013, Int. J. Distance Educ. Technol..

[15]  Björn W. Schuller,et al.  Data-driven clustering in emotional space for affect recognition using discriminatively trained LSTM networks , 2009, INTERSPEECH.

[16]  Eduard Hovy,et al.  Identifying Metaphorical Word Use with Tree Kernels , 2013 .

[17]  Srini Narayanan,et al.  Multilingual Metaphor Processing: Experiments with Semi-Supervised and Unsupervised Learning , 2017, Computational Linguistics.

[18]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[19]  Danushka Bollegala,et al.  Metaphor Interpretation Using Paraphrases Extracted from the Web , 2013, PloS one.

[20]  J. Toomasian The Case for the Case , 2016, Perfusion.

[21]  Zornitsa Kozareva,et al.  Multilingual Affect Polarity and Valence Prediction in Metaphor-Rich Texts , 2013, ACL.

[22]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[23]  Houfeng Wang,et al.  Interactive Attention Networks for Aspect-Level Sentiment Classification , 2017, IJCAI.

[24]  Razvan Pascanu,et al.  Theano: new features and speed improvements , 2012, ArXiv.

[25]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[26]  Minlie Huang,et al.  Modeling Rich Contexts for Sentiment Classification with LSTM , 2016, ArXiv.

[27]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[28]  Suresh Manandhar,et al.  SemEval-2014 Task 4: Aspect Based Sentiment Analysis , 2014, *SEMEVAL.

[29]  Chang Su,et al.  Automatic detection and interpretation of nominal metaphor based on the theory of meaning , 2017, Neurocomputing.

[30]  Shampa Chakraverty,et al.  Metaphor Detection Using Fuzzy Rough Sets , 2017, IJCRS.

[31]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[32]  Li Zhang Exploration of Metaphor and Affect Sensing Using Semantic Interpretation in an Intelligent Agent , 2012, TSD.

[33]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[34]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[35]  George A. Vouros,et al.  Investigating Metaphorical Language in Sentiment Analysis: A Sense-to-Sentiment Perspective , 2012, TSLP.

[36]  Hoang Long Nguyen,et al.  KELabTeam: A Statistical Approach on Figurative Language Sentiment Analysis in Twitter , 2015, *SEMEVAL.

[37]  Tomek Strzalkowski,et al.  Computing Affect in Metaphors , 2014 .

[38]  Li Zhao,et al.  Attention-based LSTM for Aspect-level Sentiment Classification , 2016, EMNLP.

[39]  Guang Chen,et al.  Dependency-Attention-Based LSTM for Target-Dependent Sentiment Analysis , 2017, SMP.

[40]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[41]  Saif Mohammad,et al.  Metaphor as a Medium for Emotion: An Empirical Study , 2016, *SEMEVAL.

[42]  Xiaocheng Feng,et al.  Effective LSTMs for Target-Dependent Sentiment Classification , 2015, COLING.

[43]  Ted Pedersen,et al.  WordNet::SenseRelate::AllWords - A Broad Coverage Word Sense Tagger that Maximizes Semantic Relatedness , 2009, NAACL.

[44]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[45]  Jerry R. Hobbs,et al.  High-Precision Abductive Mapping of Multilingual Metaphors , 2015 .

[46]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.