Detection of Hydrofluoric Acid by a SiO2 Sol-Gel Coating Fiber-Optic Probe Based on Reflection-Based Localized Surface Plasmon Resonance

A novel fiber-optic probe based on reflection-based localized surface plasmon resonance (LSPR) was developed to quantify the concentration of hydrofluoric acid (HF) in aqueous solutions. The LSPR sensor was constructed with a gold nanoparticle-modified PMMA fiber, integrated with a SiO2 sol-gel coating. This fiber-sensor was utilized to assess the relationship between HF concentration and SiO2 sol-gel layer etching reduction. The results demonstrated the LSPR sensor was capable of detecting HF-related erosion of hydrofluoric acid solutions of concentrations ranging from 1% to 5% using Relative RI Change Rates. The development of the LSPR sensor constitutes the basis of a detector with significant sensitivity for practical use in monitoring HF solution concentrations.

[1]  J. Shapter,et al.  Adhesion of chemically and electrostatically bound gold nanoparticles to a self-assembled silane monolayer investigated by atomic force volume spectroscopy , 2009 .

[2]  Tsao-Jen Lin,et al.  Using Monoclonal Antibody to Determine Lead Ions with a Localized Surface Plasmon Resonance Fiber-optic Biosensor , 2008, Sensors.

[3]  María Espinosa Bosch,et al.  Recent Development in Optical Fiber Biosensors , 2007, Sensors (Basel, Switzerland).

[4]  Yi-Fang Lin,et al.  Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance , 2006 .

[5]  Sylvain Ballandras,et al.  High sensitivity anhydride hexafluorhydric acid sensor , 2005 .

[6]  Katsuo Takahashi,et al.  Detection properties of electrochemical acidic gas sensors using halide–halate electrolytic solutions , 2005 .

[7]  S. Bennison,et al.  Corrosion of Ceramics in Aqueous Hydrofluoric Acid , 2004 .

[8]  Thomas Thundat,et al.  Detection of femtomolar concentrations of HF Using an SiO(2) microcantilever. , 2004, Analytical chemistry.

[9]  W. Daniau,et al.  Development of a high sensitivity anhydride hexafluorhydric acid sensor , 2003, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003.

[10]  Isao Sato,et al.  Effect of buffered hydrofluoric acid etching on LCD glass substrates , 2002 .

[11]  G. Tyndall,et al.  All-telecom diode laser based mid-IR source for spectroscopic detection of HF, H2O and HDO , 2002 .

[12]  Ashutosh Chilkoti,et al.  A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. , 2002, Analytical chemistry.

[13]  Glen McHale,et al.  Resonant conditions for Love wave guiding layer thickness , 2001 .

[14]  M. Sailor,et al.  Detection of HF Gas with a Porous Silicon Interferometer , 2000 .

[15]  George C. Schatz,et al.  Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling , 1999 .

[16]  S. W. Sharkawy,et al.  Corrosion of silicon nitride ceramics in aqueous hcl and hf solutions at 27–80°C , 1998 .

[17]  D. Biswas,et al.  Characterization of Plastic Optical Fiber , 1998 .

[18]  Bernhard Jakoby,et al.  Properties of Love waves: applications in sensors , 1997 .

[19]  Satoru Watanabe,et al.  In-situ infrared characterization of a chemically oxidized silicon surface dissolving in aqueous hydrofluoric acid , 1995 .

[20]  Csaba Hegedűs,et al.  A fémre égetett kerámiapótlás javításánál használatos felszínérdesítési eljárások pásztázó elektronmikroszkópos (SEM) vizsgálata. , 1995 .

[21]  H. Ache,et al.  Characterization of a Fiber-Optic Evanescent Wave Absorbance Sensor for Nonpolar Organic Compounds , 1993 .

[22]  J. Powers,et al.  Bond strength of composite to porcelain treated with new porcelain repair agents. , 1992, Dental materials : official publication of the Academy of Dental Materials.

[23]  Paul M. Danehy,et al.  Detection of HF using infrared degenerate four-wave mixing , 1992 .

[24]  K. Kanamori,et al.  [Study on the porcelain veneer restoration. 3. Effect of various treatments of porcelain surface on the bonding strength at porcelain-resin interface]. , 1990, Aichi Gakuin Daigaku Shigakkai shi.

[25]  Lloyd W. Burgess,et al.  A Fiber-Optic FT-NIR Evanescent Field Absorbance Sensor , 1990 .

[26]  L. Casper Microelectronics Processing: Inorganic Materials Characterization , 1986 .

[27]  Charlie A. Peterson,et al.  Effects of Various Chemistries on Silicon-Wafer Cleaning , 1986 .

[28]  R. J. Warmack,et al.  Optical properties of heated Ag films , 1984 .

[29]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[30]  Jong Hyun Lee,et al.  Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal , 1998 .

[31]  Bernhard Jakoby,et al.  Properties of Love waves: applications in sensors , 1997 .

[32]  C. Cserháti,et al.  [Scanning electron microscopy in the study of surface treatment methods used in the repair of porcelain-fused-to-metal restorations]. , 1995, Fogorvosi szemle.