Growth and characteristics of β-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition

[1]  Hongping Zhao,et al.  High-temperature low-pressure chemical vapor deposition of β-Ga2O3 , 2020 .

[2]  Y. Lv,et al.  Single crystalline β-Ga2O3 homoepitaxial films grown by MOCVD , 2020 .

[3]  A. Tiwari,et al.  Effect of thickness on the performance of solar blind photodetectors fabricated using PLD grown β-Ga2O3 thin films , 2020 .

[4]  Yan Cui,et al.  Growth and characterization of Sn-doped β-Ga2O3 thin films by chemical vapor deposition using solid powder precursors toward solar-blind ultraviolet photodetection , 2020 .

[5]  D. Guo,et al.  Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition , 2020 .

[6]  Xianying Wang,et al.  High-performance β-Ga2O3 thickness dependent solar blind photodetector. , 2020, Optics express.

[7]  A. Koehler,et al.  Phase Control of Crystalline Ga2O3 Films by Plasma-Enhanced Atomic Layer Deposition , 2020 .

[8]  O. Bierwagen,et al.  Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (2¯01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE) , 2020, APL Materials.

[9]  Baoshun Zhang,et al.  Metalorganic Chemical Vapor Deposition Heteroepitaxial β‐Ga2O3 and Black Phosphorus Pn Heterojunction for Solar‐Blind Ultraviolet and Infrared Dual‐Band Photodetector , 2019, physica status solidi (a).

[10]  J. Speck,et al.  Low temperature electron mobility exceeding 104 cm2/V s in MOCVD grown β-Ga2O3 , 2019, APL Materials.

[11]  Zhenping Wu,et al.  Review of Ga2O3-based optoelectronic devices , 2019 .

[12]  G. Chang,et al.  Influence of growth temperature on the characteristics of β-Ga2O3 epitaxial films and related solar-blind photodetectors , 2019, Applied Surface Science.

[13]  Yuting Chen,et al.  Influence of annealing on the structural and optical properties of gallium oxide films deposited on c-sapphire substrate , 2019, Vacuum.

[14]  Q. Guo,et al.  Low temperature growth of Ga2O3 films on sapphire substrates by plasma assisted pulsed laser deposition , 2019, AIP Advances.

[15]  Hongping Zhao,et al.  MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties , 2019, Applied Physics Letters.

[16]  Hai Lu,et al.  Carrier Transport and Gain Mechanisms in $\beta$ –Ga2O3-Based Metal–Semiconductor–Metal Solar-Blind Schottky Photodetectors , 2019, IEEE Transactions on Electron Devices.

[17]  M. Stutzmann,et al.  Growth and characterization of β-Ga2O3 thin films on different substrates , 2019, Journal of Applied Physics.

[18]  F. Ren,et al.  Review of gallium-oxide-based solar-blind ultraviolet photodetectors , 2019, Photonics Research.

[19]  C. Shan,et al.  Ga2O3 photodetector arrays for solar-blind imaging , 2019, Journal of Materials Chemistry C.

[20]  Hongping Zhao,et al.  Low pressure chemical vapor deposition of β-Ga2O3thin films: Dependence on growth parameters , 2019, APL Materials.

[21]  Ming Liu,et al.  An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application , 2018, Nanoscale Research Letters.

[22]  Weihua Tang,et al.  Arrays of Solar-Blind Ultraviolet Photodetector Based on $\beta$ -Ga2O3 Epitaxial Thin Films , 2018, IEEE Photonics Technology Letters.

[23]  Wenjun Zheng,et al.  High quality β -Ga 2 O 3 film grown with N 2 O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed , 2018 .

[24]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[25]  M. Baldini,et al.  Recent progress in the growth of β-Ga2O3 for power electronics applications , 2017 .

[26]  P. T. Lai,et al.  High-sensitivity β-Ga 2 O 3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate , 2017 .

[27]  R. Droopad,et al.  Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors , 2017 .

[28]  J. Boeckl,et al.  Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition , 2017 .

[29]  Z. Yin,et al.  Aligned Growth of Millimeter-Size Hexagonal Boron Nitride Single-Crystal Domains on Epitaxial Nickel Thin Film. , 2017, Small.

[30]  James S. Speck,et al.  Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy , 2017 .

[31]  Roger H. French,et al.  Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition , 2016 .

[32]  Jaime A. Freitas,et al.  Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition , 2016 .

[33]  Hongping Zhao,et al.  Synthesis of wide bandgap Ga2O3 (Eg ∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition , 2016 .

[34]  Akito Kuramata,et al.  Recent progress in Ga2O3 power devices , 2016 .

[35]  Xiaona Li,et al.  The lattice distortion of β-Ga2O3 film grown on c-plane sapphire , 2015, Journal of Materials Science: Materials in Electronics.

[36]  K. Shimamura,et al.  Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy , 2015 .

[37]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[38]  J. Boeckl,et al.  Towards High‐Mobility Heteroepitaxial β‐Ga2O3 on Sapphire − Dependence on The Substrate Off‐Axis Angle , 2018 .