Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction

Quasi-velocities computed with the kinetic metric of a Lagrangian system are introduced, and the quasi-Lagrange equations are derived with and without friction. This is shown to be very well suited to systems subject to unilateral constraints (hence varying topology) and impacts. Energetical consistency of a generalized kinematic impact law is carefully studied, both in the frictionless and the frictional cases. Some results concerning the existence and uniqueness of solutions to the so-called contact linear complementarity problem, when friction is present, are provided.

[1]  W. Blajer A Geometric Unification of Constrained System Dynamics , 1997 .

[2]  Bernard Brogliato,et al.  Multiple Impacts in Dissipative Granular Chains , 2013 .

[3]  Dennis S. Bernstein,et al.  Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory , 2005 .

[4]  J. Moreau,et al.  Nonsmooth Mechanics and Applications , 1989 .

[5]  Thomas R. Kane,et al.  The Use of Kane's Dynamical Equations in Robotics , 1983 .

[6]  Laetitia Paoli,et al.  A convergence result for a vibro-impact problem with a general inertia operator , 2009 .

[7]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[8]  Linda R. Petzold,et al.  An Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multibody Dynamic Systems , 1998, SIAM J. Sci. Comput..

[9]  B. Brogliato,et al.  New results on Painlevé paradoxes , 1999 .

[10]  Michael Beitelschmidt,et al.  Simulation of constrained mechanical systems , 2007 .

[11]  Andrew D. Lewis,et al.  Simple mechanical control systems with constraints , 2000, IEEE Trans. Autom. Control..

[12]  Hamid M. Lankarani,et al.  Treatment of Impact with Friction in Planar Multibody Mechanical Systems , 2001 .

[13]  C. Fombrun,et al.  Matrix , 1979, Encyclopedic Dictionary of Archaeology.

[14]  Alberto Seeger,et al.  A Variational Approach to Copositive Matrices , 2010, SIAM Rev..

[15]  C. Glocker Energetic consistency conditions for standard impacts , 2012, Multibody System Dynamics.

[16]  Jorge Angeles,et al.  Generalization of the Energetic Coefficient of Restitution for Contacts in Multibody Systems , 2008 .

[17]  Pål Johan From,et al.  An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part one: Single Rigid Bodies , 2012 .

[18]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[19]  B. Brogliato Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems , 2013 .

[20]  C. Glocker Set-valued force laws , 2001 .

[21]  Henk Nijmeijer,et al.  Periodic motion and bifurcations induced by the Painlevé paradox , 2002 .

[22]  K. Kozlowski,et al.  A survey of equations of motion in terms of inertial quasi-velocities for serial manipulators , 2006 .

[23]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[24]  Pål Johan From An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems , 2012 .

[25]  Federica Caselli,et al.  Collision of three balls on a plane , 2009 .

[26]  Farhad Aghili,et al.  A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: applications to control and simulation , 2005, IEEE Transactions on Robotics.

[27]  P. Appell Traité de Mécanique rationnelle , 1896 .

[28]  A. Ivanov On multiple impact , 1995 .

[29]  G. Guidoboni,et al.  ON THE NONLINEAR STABILITY OF MARANGONI–BÉNARD PROBLEM WITH FREE SURFACE IN THE BOUSSINESQ APPROXIMATION , 2005 .

[30]  Christoph Glocker,et al.  Oblique Frictional Impact of a Bar: Analysis and Comparison of Different Impact Laws , 2005 .

[31]  D. J. Braun,et al.  Simulation of Constrained Mechanical Systems — Part I: An Equation of Motion , 2012 .

[32]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[33]  Christoph Glocker,et al.  An Introduction to Impacts , 2006 .

[34]  Farhad Aghili,et al.  Control of Redundant Mechanical Systems Under Equality and Inequality Constraints on Both Input and Constraint Forces , 2011 .

[35]  Singularities in the dynamics of systems with non-ideal constraints☆ , 2003 .

[36]  The Bounds on the Coefficients of Restitution for the Frictional Impact of Rigid Pendulum Against a Fixed Surface , 2010 .

[37]  William L. Cleghorn,et al.  Finite and impulsive motion of constrained mechanical systems via Jourdain's principle: discrete and hybrid parameter models , 2003 .

[38]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[39]  A. Bowling,et al.  Solution to indeterminate multipoint impact with frictional contact using constraints , 2012 .

[40]  Bernard Brogliato,et al.  Study of the Planar Rocking-Block Dynamics With Coulomb Friction: Critical Kinetic Angles , 2013 .

[41]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[42]  J. Trinkle,et al.  On Dynamic Multi‐Rigid‐Body Contact Problems with Coulomb Friction , 1995 .

[43]  F. Pfeiffer,et al.  Multiple impacts with friction in rigid multibody systems , 1995 .

[44]  N. Wouw,et al.  Stability and Convergence of Mechanical Systems with Unilateral Constraints , 2008 .

[45]  N. Harris McClamroch,et al.  Feedback Stabilization and Tracking of Constrained Robots , 1987, 1987 American Control Conference.

[46]  Todd D. Murphey,et al.  Variational solutions to simultaneous collisions between multiple rigid bodies , 2010, 2010 IEEE International Conference on Robotics and Automation.

[47]  Jeffrey C. Trinkle,et al.  Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction , 1996, Math. Program..

[48]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[49]  An Indeterminate Problem in Classical Mechanics , 1952 .

[50]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[51]  One‐dimensional collisions and Chebyshev polynomials , 1977 .

[52]  W. Blajer A geometrical interpretation and uniform matrix formulation of multibody system dynamics , 2001 .

[53]  The equations of motion of a system under the action of the impulsive constraints , 1988 .

[54]  John L. Junkins,et al.  AN INSTANTANEOUS EIGENSTRUCTURE QUASIVELOCITY FORMULATION FOR NONLINEAR MULTIBODY DYNAMICS , 1997 .

[55]  Farhad Aghili,et al.  Dynamics and control of constrained mechanical systems in terms of reduced quasi-velocities , 2008, 2008 IEEE International Conference on Robotics and Automation.

[56]  P. Panagiotopoulos,et al.  Nonsmooth Mechanics I , 1996 .

[57]  Georgios E. Stavroulakis,et al.  Nonsmooth Mechanics of Solids , 2006 .

[58]  V. V. Kozlov,et al.  Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts , 1991 .

[59]  B. Ravani,et al.  On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems , 1995 .

[60]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[61]  Bernard Brogliato,et al.  Trajectory Tracking Control of Multiconstraint Complementarity Lagrangian Systems , 2010, IEEE Transactions on Automatic Control.

[62]  Jorge Angeles,et al.  Impacts in multibody systems: modeling and experiments , 2008 .

[63]  Matthias Dietmar Payr,et al.  An Experimental and Theoretical Study of Perfect Multiple Contact Collisions in Linear Chains of Balls , 2008 .

[64]  Giuseppe Buttazzo,et al.  On the approximation of the elastic bounce problem on Riemannian manifolds , 1983 .

[65]  Perry Y. Li,et al.  Passive Decomposition of Mechanical Systems With Coordination Requirement , 2013, IEEE Transactions on Automatic Control.

[66]  Xiaojun Chen,et al.  Perturbation Bounds of P-Matrix Linear Complementarity Problems , 2007, SIAM J. Optim..

[67]  T. Kane,et al.  ON THE DERIVATION OF EQUATIONS OF MOTION , 1965 .

[68]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[69]  B. Brogliato Nonsmooth Impact Mechanics: Models, Dynamics and Control , 1996 .

[70]  Catherine Cholet Chocs de solides rigides , 1998 .

[71]  Y. Khulief Modeling of Impact in Multibody Systems: An Overview , 2013 .

[72]  C. Q. Liu,et al.  Another form of equations of motion for constrained multibody systems , 2008 .

[73]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[74]  B. Brogliato Nonsmooth Mechanics: Models, Dynamics and Control , 1999 .

[75]  Zexiang Li,et al.  A unified geometric approach to modeling and control of constrained mechanical systems , 2002, IEEE Trans. Robotics Autom..

[76]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[77]  R. Luciano,et al.  Stress-penalty method for unilateral contact problems: mathematical formulation and computational aspects , 1994 .

[78]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[79]  A. G. Greenhill Analytical Mechanics , 1890, Nature.

[80]  H. Brauchli Mass-orthogonal formulation of equations of motion for multibody systems , 1991 .

[81]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[82]  Abhinandan Jain,et al.  Diagonalized Lagrangian robot dynamics , 1995, IEEE Trans. Robotics Autom..

[83]  F. R. Gantmakher The Theory of Matrices , 1984 .

[84]  Laetitia Paoli CONTINUOUS DEPENDENCE ON DATA FOR VIBRO-IMPACT PROBLEMS , 2005 .

[85]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[86]  F. Gantmacher Lectures in Analytical Mechanics , 1975 .

[87]  Todd D. Murphey,et al.  Conditions for uniqueness in simultaneous impact with application to mechanical design , 2012, 2012 IEEE International Conference on Robotics and Automation.

[88]  A. P. Ivanov Impacts in a system with certain unilateral couplings , 1987 .

[89]  G. Stavroulakis Multibody Dynamics with Unilateral Contacts by Friedrich Pfeiffer and Christoph Glocker, Wiley, New York, 1996 , 1998 .

[90]  L. Munteanu,et al.  ON THE DYNAMICS OF NON-HOLONOMIC SYSTEMS , 2009 .

[91]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[92]  M. Frémond Rigid bodies collisions , 1995 .

[93]  B. Brogliato,et al.  On the control of finite-dimensional mechanical systems with unilateral constraints , 1997, IEEE Trans. Autom. Control..

[94]  Bernard Brogliato,et al.  Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls , 2012 .

[95]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[96]  Right-hand solutions of the differential equations of dynamics for mechanical systems with sliding friction☆ , 1995 .

[97]  Peter Betsch,et al.  The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics , 2008 .

[98]  Alan Bowling,et al.  Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction , 2009 .

[99]  Bernard Brogliato Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings , 2004, Syst. Control. Lett..