Device Concepts for Graphene-Based Terahertz Photonics

Graphene is establishing itself as a new photonic material with huge potential in a variety of applications ranging from transparent electrodes in displays and photovoltaic modules to saturable absorber in mode-locked lasers. Its peculiar bandstructure and electron transport characteristics naturally suggest graphene could also form the basis for a new generation of high-performance devices operating in the terahertz (THz) range of the electromagnetic spectrum. The region between 300 GHz and 10 THz is in fact still characterized by a lack of efficient, compact, solid state photonic components capable of operating well at 300 K. Recent works have already shown very promising results in the development of high-speed modulators as well as of bolometer and plasma-wave detectors. Furthermore, several concepts have been proposed aiming at the realization of lasers and oscillators. This paper will review the latest achievements in graphene-based THz photonics and discuss future perspectives of this rapidly developing research field.

[1]  Huili Grace Xing,et al.  Terahertz imaging employing graphene modulator arrays. , 2013, Optics express.

[2]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[3]  Juan Sebastian Gómez Díaz,et al.  Reconfigurable THz Plasmonic Antenna Concept Using a Graphene Stack , 2012, 1210.8057.

[4]  M. Rahm,et al.  Spectrally wide-band terahertz wave modulator based on optically tuned graphene. , 2012, ACS nano.

[5]  Huili Grace Xing,et al.  Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. , 2012, Nano letters.

[6]  Michael S. Shur,et al.  Double graphene-layer plasma resonances terahertz detector , 2012 .

[7]  Jérôme Faist,et al.  Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission , 2012 .

[8]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[9]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[10]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[11]  Wenjuan Zhu,et al.  Three-terminal graphene negative differential resistance devices. , 2012, ACS nano.

[12]  Taiichi Otsuji,et al.  Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature , 2012 .

[13]  A. Gossard,et al.  An improved model for non-resonant terahertz detection in field-effect transistors , 2012 .

[14]  Dominique Coquillat,et al.  Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. , 2012, Nano letters.

[15]  P. Ajayan,et al.  Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene , 2012, Nature Communications.

[16]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[17]  M. Fuhrer,et al.  Dual-gated bilayer graphene hot-electron bolometer. , 2011, Nature nanotechnology.

[18]  D. Jena,et al.  Single-particle tunneling in doped graphene-insulator-graphene junctions , 2011, 1108.4881.

[19]  Peter Meissner,et al.  Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz , 2011 .

[20]  Vladimir Mitin,et al.  Toward the creation of terahertz graphene injection laser , 2011 .

[21]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[22]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[23]  A. Tredicucci,et al.  Tunable Emission in THz Quantum Cascade Lasers , 2011, IEEE Transactions on Terahertz Science and Technology.

[24]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[25]  D. Jena,et al.  Unique prospects for graphene-based terahertz modulators , 2011, 1107.4725.

[26]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[27]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[28]  David Shrekenhamer,et al.  High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. , 2011, Optics express.

[29]  Charles M Marcus,et al.  Hot carrier transport and photocurrent response in graphene. , 2011, Nano letters.

[30]  Phaedon Avouris,et al.  Relaxation of optically excited carriers in graphene , 2011, 1103.5523.

[31]  G. Vignale,et al.  Drude weight, plasmon dispersion, and a.c. conductivity in doped graphene sheets , 2011, 1101.4291.

[32]  Hongkun Park,et al.  Gate-activated photoresponse in a graphene p-n junction. , 2010, Nano letters.

[33]  Sushil Kumar,et al.  Recent Progress in Terahertz Quantum Cascade Lasers , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Safumi Suzuki,et al.  Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature , 2010 .

[35]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[36]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[37]  M. Dragoman,et al.  Terahertz antenna based on graphene , 2010 .

[38]  M. Shur,et al.  Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides , 2010 .

[39]  V. Ryzhii,et al.  Terahertz and Infrared Photodetection Using p-i-n Multiple-Graphene-Layer Structures * , 2009, Graphene-Based Terahertz Electronics and Plasmonics.

[40]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[41]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[42]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[43]  M. Ryzhii,et al.  Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures , 2009, 0908.2488.

[44]  Mikhail I. Dyakonov,et al.  Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications , 2009, 0907.2523.

[45]  Alvydas Lisauskas,et al.  A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology , 2009, IEEE Journal of Solid-State Circuits.

[46]  P. Plochocka,et al.  Slowing hot-carrier relaxation in graphene using a magnetic field , 2009, 0906.1104.

[47]  Martin Koch,et al.  Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators , 2009 .

[48]  M. C. Martin,et al.  Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene , 2009, 0903.0577.

[49]  Thomas Elsaesser,et al.  Ultrafast carrier dynamics in graphite. , 2009, Physical review letters.

[50]  V. Ryzhii,et al.  Graphene bilayer field-effect phototransistor for terahertz and infrared detection , 2009, 0901.3409.

[51]  Sandra Wolff,et al.  Polarization-independent active metamaterial for high-frequency terahertz modulation. , 2009, Optics express.

[52]  M. Shur,et al.  Graphene Tunneling Transit-Time Terahertz Oscillator Based on Electrically Induced p–i–n Junction , 2009 .

[53]  E. Tutuc,et al.  Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device , 2009, IEEE Electron Device Letters.

[54]  Farhan Rana,et al.  Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. , 2008, Nano letters.

[55]  Hong Lu,et al.  Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. , 2008, Optics express.

[56]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[57]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[58]  Carlo Sirtori,et al.  13GHz direct modulation of terahertz quantum cascade lasers , 2007 .

[59]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[60]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[61]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[62]  尾辻 泰一 Negative dynamic conductivity of graphene with optical pumping , 2007 .

[63]  尾辻 泰一 Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures , 2007 .

[64]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[65]  Michael S. Shur,et al.  Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor , 2005 .

[66]  Mitsuhiro Hanabe,et al.  Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron-mobility transistors , 2004 .

[67]  M. Koch,et al.  Room-temperature operation of an electrically driven terahertz modulator , 2004 .

[68]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[69]  M. Shur,et al.  Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid , 1996 .

[70]  X. Zhang,et al.  Free‐space electro‐optic sampling of terahertz beams , 1995 .

[71]  M. Nuss,et al.  Imaging with terahertz waves. , 1995, Optics letters.

[72]  E. Brown,et al.  Coherent millimeter‐wave generation by heterodyne conversion in low‐temperature‐grown GaAs photoconductors , 1993 .

[73]  Xiang Zhang,et al.  Free‐space radiation from electro‐optic crystals , 1990 .

[74]  H. Aoki Novel Landau level laser in the quantum Hall regime , 1986 .

[75]  K. Cheung,et al.  Coherent time-domain far-infrared spectroscopy , 1985 .

[76]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[77]  C. W. Gabel,et al.  Picosecond microwave pulse generation (A) , 1981 .