Corrigendum: Toll-like receptor 9—dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE

[1]  L. Audoly,et al.  Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE , 2007, Nature Immunology.

[2]  K. Tracey,et al.  High Mobility Group B1 Protein Suppresses the Human Plasmacytoid Dendritic Cell Response to TLR9 Agonists1 , 2006, The Journal of Immunology.

[3]  K. Ishii,et al.  Innate immune recognition of, and regulation by, DNA. , 2006, Trends in immunology.

[4]  R. Coffman,et al.  Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation , 2006, The Journal of experimental medicine.

[5]  K. Tracey,et al.  Role of HMGB1 in apoptosis-mediated sepsis lethality , 2006, The Journal of Experimental Medicine.

[6]  K. Stott,et al.  Structure of a complex of tandem HMG boxes and DNA. , 2006, Journal of molecular biology.

[7]  C. Goodnow Discriminating Microbe from Self Suffers a Double Toll , 2006, Science.

[8]  M. Crow,et al.  Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. , 2006, Arthritis and rheumatism.

[9]  A. Krieg,et al.  Therapeutic potential of Toll-like receptor 9 activation , 2006, Nature Reviews Drug Discovery.

[10]  A. Aderem,et al.  TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE , 2006, The Journal of Experimental Medicine.

[11]  E. Abraham,et al.  High mobility group box 1 protein interacts with multiple Toll-like receptors. , 2006, American journal of physiology. Cell physiology.

[12]  C. Lucchesi,et al.  Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. Chandaroy,et al.  Accelerated Macrophage Apoptosis Induces Autoantibody Formation and Organ Damage in Systemic Lupus Erythematosus1 , 2006, The Journal of Immunology.

[14]  R. Medzhitov,et al.  Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA , 2006, Nature Immunology.

[15]  P. Smolewski,et al.  Peripheral blood lymphocyte apoptosis and circulating dendritic cells in patients with systemic lupus erythematosus: correlation with immunological status and disease-related symptoms , 2006, Clinical Rheumatology.

[16]  A. Luster,et al.  Toll‐Like Receptor Activation in the Pathogenesis of Systemic Lupus Erythematosus , 2005, Annals of the New York Academy of Sciences.

[17]  M. Crow Interferon pathway activation in systemic lupus erythematosus , 2005, Current rheumatology reports.

[18]  L. Padyukov,et al.  Increased expression of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in skin lesions of patients with lupus erythematosus. , 2005, Arthritis and rheumatism.

[19]  S. Akira,et al.  Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus , 2005, The Journal of experimental medicine.

[20]  G. Trinchieri,et al.  Production of type I interferons , 2005, The Journal of experimental medicine.

[21]  Francesco Bertoni,et al.  Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1–polarizing program in dendritic cells , 2005, Nature Immunology.

[22]  M. Bianchi,et al.  Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells , 2005, European journal of immunology.

[23]  Peter P. Nawroth,et al.  Release of High Mobility Group Box 1 by Dendritic Cells Controls T Cell Activation via the Receptor for Advanced Glycation End Products1 , 2005, The Journal of Immunology.

[24]  M. Peterson,et al.  Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. , 2005, Arthritis and rheumatism.

[25]  U. Andersson,et al.  RAGE is the Major Receptor for the Proinflammatory Activity of HMGB1 in Rodent Macrophages , 2005, Scandinavian journal of immunology.

[26]  W. Trojaborg,et al.  Antagonism of RAGE suppresses peripheral nerve regeneration , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[27]  Jongdae Lee,et al.  Necessity of Oligonucleotide Aggregation for Toll-like Receptor 9 Activation* , 2004, Journal of Biological Chemistry.

[28]  S. Akira,et al.  Comparison of CpG s-ODNs, chromatin immune complexes, and dsDNA fragment immune complexes in the TLR9-dependent activation of rheumatoid factor B cells , 2004, Journal of endotoxin research.

[29]  K. Tracey,et al.  Recombinant HMGB1 with cytokine-stimulating activity. , 2004, Journal of immunological methods.

[30]  L. Rönnblom,et al.  Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. , 2004, Arthritis and rheumatism.

[31]  R. Donato,et al.  Amphoterin Stimulates Myogenesis and Counteracts the Antimyogenic Factors Basic Fibroblast Growth Factor and S100B via RAGE Binding , 2004, Molecular and Cellular Biology.

[32]  U. Andersson,et al.  HMGB1 is a potent trigger of arthritis , 2004, Journal of internal medicine.

[33]  K. Tracey,et al.  Extracellular role of HMGB1 in inflammation and sepsis , 2004, Journal of internal medicine.

[34]  M. Bianchi,et al.  Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation , 2004, The Journal of cell biology.

[35]  B. Monks,et al.  TLR9 signals after translocating from the ER to CpG DNA in the lysosome , 2004, Nature Immunology.

[36]  K. Tracey,et al.  Reversing established sepsis with antagonists of endogenous high-mobility group box 1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  L. Rönnblom,et al.  Role of Natural Interferon-α Producing Cells (Plasmacytoid Dendritic Cells) in Autoimmunity , 2003 .

[38]  M. Shlomchik,et al.  Activation of autoreactive B cells by CpG dsDNA. , 2003, Immunity.

[39]  K. Preissner,et al.  The Pattern Recognition Receptor (RAGE) Is a Counterreceptor for Leukocyte Integrins , 2003, The Journal of experimental medicine.

[40]  Tiziana Bonaldi,et al.  Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion , 2003, The EMBO journal.

[41]  M. Nakajima,et al.  The receptor for advanced glycation end‐products (RAGE) directly binds to ERK by a D‐domain‐like docking site , 2003, FEBS letters.

[42]  Virginia Pascual,et al.  Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. , 2003, Immunity.

[43]  C. Lau,et al.  Pathogenesis of systemic lupus erythematosus , 2003, Journal of clinical pathology.

[44]  Michael Bustin,et al.  Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. , 2003, Blood.

[45]  Virginia Pascual,et al.  Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood , 2003, The Journal of experimental medicine.

[46]  P. Fitzgerald-Bocarsly Natural Interferon-α Producing Cells: The Plasmacytoid Dendritic Cells , 2002 .

[47]  Jun Yu Li,et al.  High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. , 2002, Arthritis and rheumatism.

[48]  K. Tracey,et al.  HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. , 2002, Gastroenterology.

[49]  T. Misteli,et al.  Release of chromatin protein HMGB1 by necrotic cells triggers inflammation , 2002, Nature.

[50]  R. Vabulas,et al.  Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartments , 2002, European journal of immunology.

[51]  M. Shlomchik,et al.  Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors , 2002, Nature.

[52]  L. Rönnblom,et al.  Importance of CpG Dinucleotides in Activation of Natural IFN‐α‐Producing Cells by a Lupus‐Related Oligodeoxynucleotide , 2001, Scandinavian journal of immunology.

[53]  Virginia Pascual,et al.  Induction of Dendritic Cell Differentiation by IFN-α in Systemic Lupus Erythematosus , 2001, Science.

[54]  S. Müller,et al.  The double life of HMGB1 chromatin protein: architectural factor and extracellular signal , 2001 .

[55]  S. Akira,et al.  Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Müller,et al.  The High Mobility Group (Hmg) Boxes of the Nuclear Protein Hmg1 Induce Chemotaxis and Cytoskeleton Reorganization in Rat Smooth Muscle Cells , 2001, The Journal of cell biology.

[57]  J. Lakowicz,et al.  On Spectral Relaxation in Proteins†¶‖ , 2000, Photochemistry and photobiology.

[58]  K. Tracey,et al.  High Mobility Group 1 Protein (Hmg-1) Stimulates Proinflammatory Cytokine Synthesis in Human Monocytes , 2000, The Journal of experimental medicine.

[59]  T. Kislinger,et al.  Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases , 2000, Nature.

[60]  L. Rönnblom,et al.  Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. , 1999, Journal of immunology.

[61]  K. Tracey,et al.  HMG-1 as a late mediator of endotoxin lethality in mice. , 1999, Science.

[62]  J. Chen,et al.  The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin , 1995, The Journal of Biological Chemistry.

[63]  P. Limburg,et al.  Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. , 1990, Arthritis and rheumatism.

[64]  K. Yoshinaga,et al.  Binding Properties of Human Anti‐DNA Antibodies to Cloned Human DNA Fragments , 1989, Scandinavian journal of immunology.

[65]  G. Goodwin,et al.  A comparison of the amino-terminal sequences of two calf-thymus chromatin non-histone proteins. , 2009, International journal of peptide and protein research.