Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis
暂无分享,去创建一个
Y. J. Kim | Audrey Y. Chu | M. Fornage | Toshiko Tanaka | M. Nalls | C. Gieger | W. Rathmann | T. Spector | A. Peters | J. Pankow | L. Ferrucci | M. McCarthy | P. Deloukas | A. Morris | G. Abecasis | L. Groop | M. Laakso | Mark A Pereira | K. Strauch | M. Boehnke | P. Ridker | D. Chasman | Y. Teo | W. Sheu | T. Wong | A. Hingorani | A. Zonderman | M. Evans | E. Tai | T. Meitinger | A. Mulas | Yongmei Liu | D. Siscovick | G. Willemsen | H. Snieder | D. Stram | E. Ingelsson | A. Jackson | J. Tuomilehto | V. Lyssenko | J. Florez | K. Taylor | J. Rotter | R. Sladek | P. Froguel | W. März | Wei-Min Chen | S. Sharp | T. Harris | I. Rudan | D. Boomsma | E. D. de Geus | M. Stumvoll | M. Swertz | Jian-Min Yuan | W. Koh | J. Meigs | N. Wareham | Jianjun Liu | J. Dupuis | A. Mahajan | J. Hottenga | C. Ladenvall | H. Grallert | A. Hamsten | P. Magnusson | M. Müller-Nurasyid | N. Pedersen | A. Jula | I. Prokopenko | N. Soranzo | Xiuqing Guo | C. Sabanayagam | Y. Böttcher | C. Marzi | M. Roden | C. Herder | C. Heng | P. Ramos | D. Saleheen | H. Watkins | James G. Wilson | B. Wolffenbuttel | K. Ong | J. Kooner | I. Njølstad | T. Wilsgaard | E. Bottinger | S. Rich | I. Barroso | N. Robertson | B. Alizadeh | Daniel S. Evans | C. Hayward | S. Kanoni | O. Polašek | H. Campbell | F. Cucca | C. Hartman | Ching-Yu Cheng | X. Sim | S. Tajuddin | A. Goel | J. Luan | I. Nolte | R. Scott | F. Takeuchi | P. J. van der Most | Weihua Zhang | T. Aung | Y. Friedlander | T. Katsuya | C. Khor | J. Kuusisto | C. Langenberg | B. Lehne | L. Rose | W. Scott | Yuan Shi | Yih-Chung Tham | J. Chambers | N. Kato | A. Oldehinkel | R. V. van Dam | A. Bonnefond | S. Sanna | R. Nagaraja | M. Go | R. Loos | R. Strawbridge | L. Yengo | Ching‐Ti Liu | D. Rybin | Man Li | S. Lobbens | B. Sennblad | C. Palmer | J. Saltevo | M. Kleber | A. Wong | M. Goodarzi | M. Kumari | S. Bornstein | G. Hovingh | C. Hsiung | M. Kivimaki | D. Kuh | P. Schwarz | A. Bertoni | Xu Lin | D. Radke | M. Nauck | Jie Huang | P. Navarro | E. Wheeler | P. Kovacs | A. Tönjes | J. V. van Vliet-Ostaptchouk | M. Blüher | Yingchang Lu | G. Müller | R. Roussel | Yucheng Jia | C. Lecoeur | M. Gross | K. Kohara | Y. Tabara | T. Miki | Peng Chen | Bong-Jo Kim | Juyoung Lee | Xu Wang | D. Roberts | E. Kabagambe | B. Porneala | J. Egan | O. Carlson | W. Garvey | L. Rasmussen-Torvik | M. Sale | Chien-Hsiun Chen | Li-Ching Chang | M. Isono | Jer-Yuarn Wu | A. Körner | W. Kiess | M. Hivert | P. Salo | I. Miljkovic | N. Maruthur | C. Elks | A. Leong | Wen-Jane Lee | Jaeyoung Hong | E. Selvin | S. Lim | Wanting Zhao | Q. Fan | Liang Sun | Yao Hu | E. V. van Iperen | Sanghoon Moon | M. Igase | Shu-Pei Tan | J. Yao | Clara Podmore | Huaixing Li | James F. Wilson | M. Serrano Ríos | S. Afaq | Franco Giulianini | M. T. Martínez Larrad | Y. Chen | Y. Cho | Yduan-Tsong Chen
[1] A. Reiner,et al. Association of Sickle Cell Trait With Hemoglobin A1c in African Americans , 2017, JAMA.
[2] H. Win,et al. Haemolysis in G6PD Heterozygous Females Treated with Primaquine for Plasmodium vivax Malaria: A Nested Cohort in a Trial of Radical Curative Regimens , 2017, PLoS medicine.
[3] 2. Classification and Diagnosis of Diabetes , 2015, Diabetes Care.
[4] Y. J. Kim,et al. Multiple Nonglycemic Genomic Loci Are Newly Associated With Blood Level of Glycated Hemoglobin in East Asians , 2014, Diabetes.
[5] P. Savage,et al. Hemoglobin A1c, fasting plasma glucose, and 2-hour plasma glucose distributions in U.S. population subgroups: NHANES 2005-2010. , 2014, Annals of epidemiology.
[6] Y. Teo,et al. A Study Assessing the Association of Glycated Hemoglobin A1C (HbA1C) Associated Variants with HbA1C, Chronic Kidney Disease and Diabetic Retinopathy in Populations of Asian Ancestry , 2013, PloS one.
[7] P. Visscher,et al. Pitfalls of predicting complex traits from SNPs , 2013, Nature Reviews Genetics.
[8] D. Stevenson,et al. Should we screen newborns for glucose-6-phosphate dehydrogenase deficiency in the United States? , 2013, Journal of Perinatology.
[9] Christian Gieger,et al. Seventy-five genetic loci influencing the human red blood cell , 2012, Nature.
[10] Tanya M. Teslovich,et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.
[11] Tanya M. Teslovich,et al. The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits , 2012, PLoS genetics.
[12] E. Tai,et al. Ethnicity modifies the relation between fasting plasma glucose and HbA1c in Indians, Malays and Chinese , 2012, Diabetic medicine : a journal of the British Diabetic Association.
[13] Claude Bouchard,et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.
[14] Chaeyoung Lee,et al. Association of glycosylated hemoglobin with the gene encoding CDKAL1 in the Korean Association Resource (KARE) study , 2012, Human mutation.
[15] P. Visscher,et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.
[16] Christian Gieger,et al. New gene functions in megakaryopoiesis and platelet formation , 2011, Nature.
[17] A. Morris,et al. Transethnic Meta-Analysis of Genomewide Association Studies , 2011, Genetic epidemiology.
[18] Inês Barroso,et al. Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes , 2011, Diabetes.
[19] J. Pankow,et al. Does Genetic Ancestry Explain Higher Values of Glycated Hemoglobin in African Americans? , 2011, Diabetes.
[20] R. Little,et al. Status of hemoglobin A1c measurement and goals for improvement: from chaos to order for improving diabetes care. , 2011, Clinical chemistry.
[21] P. Visscher,et al. GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.
[22] S. Wild,et al. The TCF7L2 Diabetes Risk Variant is Associated with HbA1C Levels: a Genome‐Wide Association Meta‐Analysis , 2010, Annals of human genetics.
[23] R. Klein,et al. Glycated Hemoglobin and the Risk of Kidney Disease and Retinopathy in Adults With and Without Diabetes , 2010, Diabetes.
[24] Christian Gieger,et al. Edinburgh Research Explorer Common variants at 10 genomic loci influence hemoglobin A(C) levels via glycemic and nonglycemic pathways , 2010 .
[25] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[26] Viola Vaccarino,et al. Glucose-Independent, Black–White Differences in Hemoglobin A1c Levels , 2010, Annals of Internal Medicine.
[27] A. Thanopoulou,et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. , 2010, The New England journal of medicine.
[28] Yusuke Nakamura,et al. Genome-wide association study of hematological and biochemical traits in a Japanese population , 2010, Nature Genetics.
[29] Alex Doney,et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.
[30] E. Ford,et al. Prevalence of Diabetes and High Risk for Diabetes Using A1C Criteria in the U.S. Population in 1988–2006 , 2010, Diabetes Care.
[31] S. Levy,et al. Markedly low hemoglobin A1c in a patient with an unusual presentation of beta-thalassemia minor. , 2010, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists.
[32] Tianxi Cai,et al. Joint Effects of Common Genetic Variants on the Risk for Type 2 Diabetes in U.S. Men and Women of European Ancestry , 2009, Annals of Internal Medicine.
[33] P. Ridker,et al. Novel Association of HK1 with Glycated Hemoglobin in a Non-Diabetic Population: A Genome-Wide Evaluation of 14,618 Participants in the Women's Genome Health Study , 2008, PLoS genetics.
[34] M. Daly,et al. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants , 2008, Genetic epidemiology.
[35] Zhaohui S. Qin,et al. A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.
[36] John M. Lachin,et al. Differences in A1C by Race and Ethnicity Among Patients With Impaired Glucose Tolerance in the Diabetes Prevention Program , 2007 .
[37] A. Leong. Is There a Need for Neonatal Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Canada? , 2007, McGill journal of medicine : MJM : an international forum for the advancement of medical sciences by students.
[38] M. Feinleib. National Center for Health Statistics (NCHS) , 2005 .
[39] L. Bry,et al. Effects of hemoglobin variants and chemically modified derivatives on assays for glycohemoglobin. , 2001, Clinical chemistry.
[40] K. Roeder,et al. Genomic Control for Association Studies , 1999, Biometrics.
[41] D. A. Hahn,et al. The affinity glycated hemoglobin in a family with hereditary spherocytosis and in other non-hemoglobinopathic hemolytic anemias. , 1987, Annals of clinical and laboratory science.
[42] L. Luzzatto,et al. Glucose-6-Phosphate Dehydrogenase Deficient Red Cells: Resistance to Infection by Malarial Parasites , 1969, Science.
[43] G. Stamatoyannopoulos,et al. Clinical implications of glucose-6-phosphate dehydrogenase deficiency. , 1966, Annals of internal medicine.
[44] BOULIN,et al. Classification and Diagnosis of Diabetes. , 2022, Primary care.