Revealing the broad iron Kα line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations

We report on the analysis of the broad Fe K α line feature of Cyg X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission ( XMM-Newton ), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe K α reflection line at 6.4 keV with a very high signal to noise ratio. The 4–500 keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole parameters with a spin of a ~ 0.9, in agreement with recent measurements from reflection and disk continuum fitting. The inclination is found to be i ~ 30°, consistent with the orbital inclination and different from inclination measurements made during the soft state, which show a higher inclination. We speculate that the difference between the inclination measurements is due to changes in the inner region of the accretion disk.

[1]  K. Pottschmidt,et al.  Long term variability of Cygnus X-1. VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system , 2015, 1502.07343.

[2]  L. Burderi,et al.  Testing rate-dependent corrections on timing mode EPIC-pn spectra of the accreting neutron star GX 13+1 , 2014, 1409.7112.

[3]  A. Markowitz,et al.  Long term variability of Cygnus X-1. VI. Energy-resolved X-ray variability 1999-2011 , 2014, 1402.4485.

[4]  J. Ziolkowski Determination of the masses of the components of the HDE 226868/Cyg X-1 binary system. , 2014, 1401.1035.

[5]  M. Reid,et al.  CONFIRMATION VIA THE CONTINUUM-FITTING METHOD THAT THE SPIN OF THE BLACK HOLE IN CYGNUS X-1 IS EXTREME , 2013, 1308.4760.

[6]  Joern Wilms,et al.  THE REFLECTION COMPONENT FROM CYGNUS X-1 IN THE SOFT STATE MEASURED BY NuSTAR AND SUZAKU , 2013, 1310.3830.

[7]  J. Rodriguez,et al.  Long term variability of Cygnus X-1 - V. State definitions with all sky monitors , 2013, 1303.1198.

[8]  T. Dauser,et al.  Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes , 2013, 1301.4922.

[9]  R. Blandford,et al.  Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes , 2012, Science.

[10]  D. J. Clark,et al.  SEPARATION OF TWO CONTRIBUTIONS TO THE HIGH ENERGY EMISSION OF CYGNUS X-1: POLARIZATION MEASUREMENTS WITH INTEGRAL SPI , 2012, 1210.4783.

[11]  K. Pottschmidt,et al.  ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK–JET CONNECTIONS , 2012, 1207.3752.

[12]  A. Fabian,et al.  On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra , 2012, 1204.5854.

[13]  J. Steiner,et al.  MODELING THE JET KINEMATICS OF THE BLACK HOLE MICROQUASAR XTE J1550−564: A CONSTRAINT ON SPIN–ORBIT ALIGNMENT , 2011, 1110.6849.

[14]  N. Schartel,et al.  Spectral analysis of 1H 0707−495 with XMM–Newton , 2011, 1112.1796.

[15]  T. Dauser,et al.  The broad iron Kα line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode , 2011, 1108.1157.

[16]  P. Uttley,et al.  Spectro-timing analysis of Cygnus X-1 during a fast state transition , 2011, 1107.4974.

[17]  M. Reid,et al.  THE MASS OF THE BLACK HOLE IN CYGNUS X-1 , 2011, 1106.3689.

[18]  M. Reid,et al.  THE TRIGONOMETRIC PARALLAX OF CYGNUS X-1 , 2011, 1106.3688.

[19]  J. Wilms,et al.  USING THE X-RAY DUST SCATTERING HALO OF CYGNUS X-1 TO DETERMINE DISTANCE AND DUST DISTRIBUTIONS , 2011, 1106.3378.

[20]  K. Pottschmidt,et al.  A MULTIWAVELENGTH STUDY OF CYGNUS X-1: THE FIRST MID-INFRARED SPECTROSCOPIC DETECTION OF COMPACT JETS , 2011, 1105.0336.

[21]  M. Reid,et al.  THE EXTREME SPIN OF THE BLACK HOLE IN CYGNUS X-1 , 2011, 1106.3690.

[22]  J. Rodriguez,et al.  Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1 , 2011, Science.

[23]  A. Fabian,et al.  Determination of the X-ray reflection emissivity profile of 1H 0707-495 , 2011, 1102.0433.

[24]  Joern Wilms,et al.  CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE , 2010, 1012.4801.

[25]  A. Fabian,et al.  X-ray Reflection , 2010 .

[26]  G. Skinner,et al.  The doubling of the superorbital period of Cyg X-1 , 2010, 1009.2907.

[27]  T. Dauser,et al.  Broad emission lines for a negatively spinning black hole , 2010, Proceedings of the International Astronomical Union.

[28]  S. Migliari,et al.  A systematic analysis of the broad iron Kα line in neutron-star LMXBs with XMM-Newton , 2010, 1005.3755.

[29]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[30]  A. Fabian,et al.  Black hole accretion discs in the canonical low‐hard state , 2009, 0911.1151.

[31]  P. C. Fragile EFFECTIVE INNER RADIUS OF TILTED BLACK HOLE ACCRETION DISKS , 2009, 0910.5721.

[32]  A. Fabian,et al.  Energetics of a black hole: constraints on the jet velocity and the nature of the X‐ray emitting region in Cyg X‐1 , 2009, 0908.3453.

[33]  V. Karas,et al.  Role of emission angular directionality in spin determination of accreting black holes with a broad iron line , 2009, 0908.2387.

[34]  G. Miniutti,et al.  Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495 , 2009, Nature.

[35]  Laeff,et al.  STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING , 2009, 0902.2840.

[36]  Greenbelt,et al.  Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE , 2009, 0902.2873.

[37]  A. Fabian,et al.  Determining the spin of two stellar‐mass black holes from disc reflection signatures , 2009, 0902.1745.

[38]  R. Staubert,et al.  Two ~35 day clocks in Hercules X-1: evidence for neutron star free precession , 2008, 0811.4045.

[39]  K. Pottschmidt,et al.  CHANDRA X-RAY SPECTROSCOPY OF THE FOCUSED WIND IN THE CYGNUS X-1 SYSTEM. I. THE NONDIP SPECTRUM IN THE LOW/HARD STATE , 2008, 0808.3771.

[40]  Michael A. Nowak,et al.  Beyond XSPEC: Toward Highly Configurable Astrophysical Analysis , 2008, 0806.0560.

[41]  A. Fabian,et al.  Broad Iron-Kα Emission Lines as a Diagnostic of Black Hole Spin , 2007, 0711.4158.

[42]  Oswald H. W. Siegmund,et al.  UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII , 2007 .

[43]  M. Nowak,et al.  Tracking the Orbital and Superorbital Periods of SMC X-1 , 2007, 0708.0038.

[44]  K. Pottschmidt,et al.  Correlated Radio-X-Ray Variability of Galactic Black Holes: A Radio-X-Ray Flare in Cygnus X-1 , 2007, 0706.1372.

[45]  J. M. Miller,et al.  Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes , 2007, 0705.0540.

[46]  D. Kazanas,et al.  Accretion Disk Illumination in Schwarzschild and Kerr Geometries: Fitting Formulae , 2007, 0704.2159.

[47]  G. Miniutti Light bending models in AGNs , 2006 .

[48]  A. Parmar,et al.  Relativistic Fe line emission and highly photoionized absorption in GROJ1655-40 , 2006 .

[49]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[50]  J. Rodriguez,et al.  The broad-band spectrum of Cygnus X-1 measured by INTEGRAL , 2005, astro-ph/0509851.

[51]  K. Pottschmidt,et al.  Long term variability of Cygnus X-1 - IV. Spectral evolution 1999–2004 , 2005, astro-ph/0510193.

[52]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[53]  J. Pringle,et al.  Aligning spinning black holes and accretion discs , 2005, astro-ph/0507098.

[54]  R. Ross,et al.  A comprehensive range of X-ray ionized-reflection models , 2005, astro-ph/0501116.

[55]  J. Z. lkowski Evolutionary constraints on the masses of the components of HDE 226868 / Cyg X-1 binary system , 2005 .

[56]  R. Narayan,et al.  Multitemperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations , 2004, astro-ph/0411583.

[57]  Mit,et al.  Long term variability of Cygnus X-1 - III. Radio–X-ray correlations , 2004, astro-ph/0407070.

[58]  Philip Kaaret,et al.  X-Ray Timing 2003: Rossi and Beyond , 2004 .

[59]  T. Yaqoob,et al.  An Extended Scheme for Fitting X-Ray Data with Accretion Disk Spectra in the Strong Gravity Regime , 2004, astro-ph/0403541.

[60]  A. Fabian,et al.  A light bending model for the X-ray temporal and spectral properties of accreting black holes , 2003, astro-ph/0309064.

[61]  Martin J. L. Turner,et al.  UV and Gamma-Ray Space Telescope Systems , 2004 .

[62]  Switzerland.,et al.  The INTEGRAL/IBIS scientific data analysis , 2003, astro-ph/0311172.

[63]  B. Ramsey,et al.  IBIS: The Imager on-board INTEGRAL , 2003 .

[64]  M. Rouger,et al.  ISGRI: The INTEGRAL soft gamma-ray imager , 2003, astro-ph/0310362.

[65]  M. Coe,et al.  Long-term properties of accretion discs in X-ray binaries — II. Stability of radiation-driven warping , 2003 .

[66]  M.J.Coe,et al.  Long-term Properties of Accretion Disks in X-ray Binaries: II. Stability of Radiation-Driven Warping , 2003, astro-ph/0304073.

[67]  C. Reynolds,et al.  Fluorescent iron lines as a probe of astrophysical black hole systems , 2003 .

[68]  M. Coe,et al.  Long-term properties of accretion discs in X-ray binaries – I. The variable third period in SMC X-1 , 2002, astro-ph/0210241.

[69]  UCSD,et al.  Long term variability of Cygnus X-1. I. X-ray spectral-temporal correlations in the hard state , 2002, astro-ph/0202258.

[70]  Arvind N. Parmar,et al.  The INTEGRAL mission , 1995, SPIE Astronomical Telescopes + Instrumentation.

[71]  L. Wen,et al.  Understanding the Long-Term Spectral Variability of Cygnus X-1 with Burst and Transient Source Experiment and All-Sky Monitor Observations , 2002 .

[72]  T. D. Matteo,et al.  Resolving the Composite Fe Kα Emission Line in the Galactic Black Hole Cygnus X-1 with Chandra , 2002, astro-ph/0202083.

[73]  M. Nowak,et al.  Coronal-temporal correlations in GX 339-4: hysteresis, possible reflection changes and implications for advection-dominated accretion flows , 2002, astro-ph/0201383.

[74]  A. Merloni,et al.  Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes? , 2001, astro-ph/0112451.

[75]  A. Stirling,et al.  A relativistic jet from Cygnus X-1 in the low/hard X-ray state , 2001, astro-ph/0107192.

[76]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[77]  M. McConnell,et al.  A High-Sensitivity Measurement of the MeV Gamma-Ray Spectrum of Cygnus X-1 , 2000, astro-ph/0001484.

[78]  Astronomy,et al.  The distribution of X-ray dips with orbital phase in Cygnus X-1 , 1999, astro-ph/9909235.

[79]  V. M. Lyuty,et al.  Orbital, precessional and flaring variability of Cygnus X-1 , 1999, astro-ph/9906365.

[80]  A. Shafter,et al.  Tomographic Analysis of Hα Profiles in HDE 226868/Cygnus X-1 , 1998 .

[81]  A. Fabian,et al.  Iron line profiles including emission from within the innermost stable orbit of a black hole accretion disc , 1998, astro-ph/9808089.

[82]  P. Maloney,et al.  Radiation-driven Warping. II. Nonisothermal Disks , 1998, astro-ph/9803238.

[83]  D. Gruber,et al.  In-Flight Performance of the High Energy X-Ray Timing Experiment on the Rossi X-Ray Timing Explorer , 1997, astro-ph/9710328.

[84]  W. Cui,et al.  Black Hole Spin in X-Ray Binaries: Observational Consequences , 1997, astro-ph/9704072.

[85]  C. B. Markwardt,et al.  Calibration of the Rossi X-Ray Timing Explorer Proportional Counter Array , 2005, astro-ph/0511531.

[86]  G. Matt,et al.  Iron Kα line intensity from accretion discs around rotating black holes , 1996 .

[87]  J. E. Pringle,et al.  Self-induced warping of accretion discs , 1996 .

[88]  H. Kunieda,et al.  Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG–6–30–15 , 1995, Nature.

[89]  M. McConnell,et al.  Observations of Cygnus X-1 COMPTEL during 1991 , 1994 .

[90]  Oswald H. W. Siegmund,et al.  EUV, X-ray, and gamma-ray instrumentation for astronomy VIII : 30 July - 1 August 1997, San Diego, California, Oswald H. W. Siegmund, Mark A. Gummin, chairs/editors ; sponsored and published by SPIE--the International Society for Optical Engineering , 1994 .

[91]  A. Laor Line Profiles from a Disk around a Rotating Black Hole , 1991 .

[92]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[93]  C. T. Bolton,et al.  The Optical Spectrum of HDE 226868=Cygnus X-1. III. A Focused Stellar Wind Model for He II lambda 4686 Emission , 1986 .

[94]  W. Priedhorsky,et al.  Cygnus X-1 : optical variation on the 294 day X-ray period. , 1983 .

[95]  W. Priedhorsky,et al.  Evidence for an about 300 day period in Cygnus X-1 , 1983 .

[96]  D. B. Friend,et al.  Radiation driven winds in X-ray binaries. , 1982 .

[97]  R. Sunyaev,et al.  Hard X-ray spectrum of Cyg X-1 , 1979, Nature.

[98]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[99]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[100]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[101]  C. T. Bolton,et al.  Identification of Cygnus X-1 with HDE 226868 , 1972, Nature.

[102]  P. Murdin,et al.  Cygnus X-1—a Spectroscopic Binary with a Heavy Companion ? , 1972, Nature.

[103]  P. Murdin,et al.  Optical Identification of Cygnus X-1 , 1971, Nature.

[104]  S. Bowyer,et al.  Cosmic X-ray Sources , 1965, Science.