Synthesis of flower-like copper sulfides microspheres as electrode materials for sodium secondary batteries

[1]  S. Adams,et al.  Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability. , 2016, Small.

[2]  Y. Gogotsi,et al.  MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium‐Ion Batteries , 2016 .

[3]  Yan Yao,et al.  Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites , 2015 .

[4]  Z. Fu,et al.  Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. , 2015, Chemical communications.

[5]  Xiulin Fan,et al.  Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode. , 2015, ACS applied materials & interfaces.

[6]  Xiulin Fan,et al.  Ether-based electrolyte enabled Na/FeS2 rechargeable batteries , 2015 .

[7]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[8]  S. Dou,et al.  WS₂@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. , 2014, Chemical communications.

[9]  Lin Guo,et al.  Bioinspired design and assembly of platelet reinforced polymer films with enhanced absorption properties , 2014 .

[10]  Hong Li,et al.  Rechargeable room-temperature CF(x)-sodium battery. , 2014, ACS applied materials & interfaces.

[11]  P. Adelhelm,et al.  Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition , 2014 .

[12]  Ruiqin Q. Zhang,et al.  Engineering of Facets, Band Structure, and Gas‐Sensing Properties of Hierarchical Sn2+‐Doped SnO2 Nanostructures , 2013 .

[13]  Mao-Sheng Cao,et al.  Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride , 2013 .

[14]  Pei Lay Yap,et al.  Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates , 2013, Chemistry Central Journal.

[15]  B. Wen,et al.  Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride) , 2013 .

[16]  B. Wen,et al.  Controllable Fabrication of CuS Hierarchical Nanostructures and Their Optical, Photocatalytic, and Wave Absorption Properties , 2013 .

[17]  Yong Wang,et al.  Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. , 2013, ACS applied materials & interfaces.

[18]  Yong‐Sheng Hu,et al.  Lithium storage in commercial MoS2 in different potential ranges , 2012 .

[19]  Chongyin Yang,et al.  Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. , 2012, ACS applied materials & interfaces.

[20]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[21]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[22]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[23]  H. Hng,et al.  Synthesis of CuxS/Cu Nanotubes and Their Lithium Storage Properties , 2012 .

[24]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[25]  Lifang Jiao,et al.  Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries , 2011 .

[26]  Meifang Zhu,et al.  Hydrophilic Flower‐Like CuS Superstructures as an Efficient 980 nm Laser‐Driven Photothermal Agent for Ablation of Cancer Cells , 2011, Advanced materials.

[27]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[28]  H. Ahn,et al.  Electrochemical properties of Na/Ni3S2 cells with liquid electrolytes using various sodium salts , 2011 .

[29]  Hongmei Du,et al.  CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries , 2011 .

[30]  Chia-Ying Chen,et al.  Quantum Dot–Sensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency , 2011 .

[31]  Jun Wang,et al.  Ionic Liquid-Assisted Synthesis of CuS Nestlike Hollow Spheres Assembled by Microflakes Using an Oil—Water Interface Route , 2010 .

[32]  Z. Fang,et al.  Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation , 2009 .

[33]  A. Khodayari,et al.  Preparation and characterization of monodispersed nanocrystalline ZnS in water-rich [EMIM]EtSO4 ionic liquid using ultrasonic irradiation , 2008 .

[34]  Ling Chen,et al.  Water-Induced Thermolytic Formation of Homogeneous Core−Shell CuS Microspheres and Their Shape Retention on Desulfurization , 2008 .

[35]  Jean-Marie Tarascon,et al.  Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide , 2006 .

[36]  J. Schoonman,et al.  Comparison of CuxS films grown by atomic layer deposition and chemical vapor deposition , 2005 .

[37]  Dongyuan Zhao,et al.  One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process , 2002 .

[38]  H. Sohn,et al.  Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries , 2002 .

[39]  S. Fafard,et al.  Spatially Resolved Visible Luminescence of Self-Assembled Semiconductor Quantum Dots , 1995, Science.

[40]  P. Ball,et al.  Science at the atomic scale , 1992, Nature.

[41]  Shichio Kawai,et al.  Electrical Conduction and Phase Transition of Copper Sulfides , 1973 .

[42]  A. Etienne Electrochemical Method to Measure the Copper Ionic Diffusivity in a Copper Sulfide Scale , 1970 .

[43]  R. D. Groot,et al.  Band gap narrowing of SnS2 superstructures with improved hydrogen production , 2016 .

[44]  J. Xie,et al.  Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties , 2013 .

[45]  Jin-Woo Park,et al.  Electrochemical Properties and Discharge Mechanism of Na/TiS2 Cells with Liquid Electrolyte at Room Temperature , 2013 .