Faster Polytope Rounding, Sampling, and Volume Computation via a Sub-Linear Ball Walk
暂无分享,去创建一个
[1] M. Ledoux. The concentration of measure phenomenon , 2001 .
[2] Santosh S. Vempala,et al. Convergence rate of Riemannian Hamiltonian Monte Carlo and faster polytope volume computation , 2017, STOC.
[3] David Applegate,et al. Sampling and integration of near log-concave functions , 1991, STOC '91.
[4] Miklós Simonovits,et al. Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.
[5] Santosh S. Vempala,et al. CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models , 2017, Bioinform..
[6] B. Klartag. On convex perturbations with a bounded isotropic constant , 2006 .
[7] Santosh S. Vempala,et al. Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..
[8] Santosh S. Vempala,et al. The Kannan-Lov\'asz-Simonovits Conjecture. , 2018, 1807.03465.
[9] G. Paouris. Small ball probability estimates for log-concave measures , 2012 .
[10] S. Vempala. Geometric Random Walks: a Survey , 2007 .
[11] Miklós Simonovits,et al. Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.
[12] Santosh S. Vempala,et al. Hit-and-run from a corner , 2004, STOC '04.
[13] Hariharan Narayanan,et al. Random walks on polytopes and an affine interior point method for linear programming , 2009, STOC '09.
[14] Santosh S. Vempala,et al. The Kannan-Lovász-Simonovits Conjecture , 2018, ArXiv.
[15] Martin J. Wainwright,et al. Fast MCMC Sampling Algorithms on Polytopes , 2017, J. Mach. Learn. Res..
[16] Santosh S. Vempala,et al. Solving convex programs by random walks , 2004, JACM.
[17] R. Osserman. The isoperimetric inequality , 1978 .
[18] Santosh S. Vempala,et al. Bypassing KLS: Gaussian Cooling and an O^*(n3) Volume Algorithm , 2015, STOC.
[19] Martin E. Dyer,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.
[20] M. Simonovits,et al. Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .
[21] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[22] Benjamin Cousins. Efficient high-dimensional sampling and integration , 2017 .
[23] Santosh S. Vempala,et al. Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[24] Santosh S. Vempala,et al. Eldan's Stochastic Localization and the KLS Hyperplane Conjecture: An Improved Lower Bound for Expansion , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[25] Santosh S. Vempala,et al. The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.
[26] Santosh S. Vempala,et al. Geodesic walks in polytopes , 2016, STOC.