Geometry of the ringed surfaces in R4 that generate spatial Pythagorean hodographs

A Pythagorean-hodograph (PH) curve r ( t ) = ( x ( t ) , y ( t ) , z ( t ) ) has the distinctive property that the components of its derivative r ' ( t ) satisfy x ' 2 ( t ) + y ' 2 ( t ) + z ' 2 ( t ) = ? 2 ( t ) for some polynomial ? ( t ) . Consequently, the PH curves admit many exact computations that otherwise require approximations. The Pythagorean structure is achieved by specifying x ' ( t ) , y ' ( t ) , z ' ( t ) in terms of polynomials u ( t ) , v ( t ) , p ( t ) , q ( t ) through a construct that can be interpreted as a mapping from R 4 to R 3 defined by a quaternion product or the Hopf map. Under this map, r ' ( t ) is the image of a ringed surface S ( t , ? ) in R 4 , whose geometrical properties are investigated herein. The generation of S ( t , ? ) through a family of four-dimensional rotations of a "base curve" is described, and the first fundamental form, Gaussian curvature, total area, and total curvature of S ( t , ? ) are derived. Furthermore, if r ' ( t ) is non-degenerate, S ( t , ? ) is not developable (a non-trivial fact in R 4 ). It is also shown that the pre-images of spatial PH curves equipped with a rotation-minimizing orthonormal frame (comprising the tangent and normal-plane vectors with no instantaneous rotation about the tangent) are geodesics on the surface S ( t , ? ) . Finally, a geometrical interpretation of the algebraic condition characterizing the simplest non-trivial instances of rational rotation-minimizing frames on polynomial space curves is derived.

[1]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[2]  R. Bishop There is More than One Way to Frame a Curve , 1975 .

[3]  Rida T. Farouki,et al.  Quaternion and Hopf map characterizations for the existence of rational rotation-minimizing frames on quintic space curves , 2010, Adv. Comput. Math..

[4]  Erich Hartmann,et al.  Gn-continuous connections between normal ringed surfaces , 2001, Comput. Aided Geom. Des..

[5]  Peter Scherk,et al.  Homographies, quaternions and rotations , 1966 .

[6]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[7]  Carla Manni,et al.  Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures , 2008, Comput. Aided Geom. Des..

[8]  David Hughes,et al.  The fourth Dimension , 2009, 0905.3048.

[9]  Rida T. Farouki,et al.  Rational rotation-minimizing frames on polynomial space curves of arbitrary degree , 2010, J. Symb. Comput..

[10]  G. M.,et al.  Geometry of Four Dimensions , 1915, Nature.

[11]  W. Cooley Elementary Geometry , 1871, Nature.

[12]  H. GUGGENHEIMER Computing frames along a trajectory , 1989, Comput. Aided Geom. Des..

[13]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[14]  D. Struik Lectures on classical differential geometry , 1951 .

[15]  H. Manning Geometry of four dimensions , 1915 .

[16]  Rida T. Farouki,et al.  Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3 , 2012, J. Comput. Appl. Math..

[17]  Carla Manni,et al.  Design of rational rotation-minimizing rigid body motions by Hermite interpolation , 2011, Math. Comput..

[18]  C. E. Weatherburn,et al.  An Introduction to Riemannian Geometry and the Tensor Calculus , 1938 .

[19]  Heinz Hopf Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche , 1931 .

[20]  Bert Jüttler Rotation Minimizing Spherical Motions , 1998 .

[21]  H. Hopf,et al.  Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche , 1931 .

[22]  Rida T. Farouki,et al.  Rational space curves are not "unit speed" , 2007, Comput. Aided Geom. Des..

[23]  Rida T. Farouki,et al.  Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants , 2013, Comput. Aided Geom. Des..

[24]  Chang Yong Han Nonexistence of rational rotation-minimizing frames on cubic curves , 2008, Comput. Aided Geom. Des..

[25]  Hyeong In Choi,et al.  Euler-Rodrigues frames on spatial Pythagorean-hodograph curves , 2002, Comput. Aided Geom. Des..

[26]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[27]  John K. Johnstone A new intersection algorithm for cyclides and swept surfaces using circle decomposition , 1993, Comput. Aided Geom. Des..

[28]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[29]  Rida T. Farouki,et al.  Structural invariance of spatial Pythagorean hodographs , 2002, Comput. Aided Geom. Des..

[30]  Rida T. Farouki,et al.  A complete classification of quintic space curves with rational rotation-minimizing frames , 2012, J. Symb. Comput..

[31]  Hwan Pyo Moon,et al.  Clifford Algebra, Spin Representation, and Rational Parameterization of Curves and Surfaces , 2002, Adv. Comput. Math..