This study aims to numerically investigate ground movement around a square steel pipe as well as a group of square steel pipes induced by its and their ground penetration for trenchless construction of a concrete box. From numerical results, ground movement induced by a square steel pipe is much more dominantly governed by vertical displacement rather than horizontal displacement. Ground settlement induced by pipe penetration is much larger as the overburden becomes lower. The settlement is also shown to be slightly dependent upon the sequence of pipe penetration. More careful construction management is highly in demand during the penetration of upper pipes since their induced settlement occupies approximately 75 percent of total ground settlement after the whole construction of steel pipes.