Nb3Sn superconducting radiofrequency cavities: fabrication, results, properties, and prospects

A microns-thick film of Nb3Sn on the inner surface of a superconducting radiofrequency (SRF) cavity has been demonstrated to substantially improve cryogenic efficiency compared to the standard niobium material, and its predicted superheating field is approximately twice as high. We review in detail the advantages of Nb3Sn coatings for SRF cavities. We describe the vapor diffusion process used to fabricate this material in the most successful experiments, and we compare the differences in the process used at different labs. We overview results of Nb3Sn SRF coatings, including CW and pulsed measurements of cavities as well as microscopic measurements. We discuss special considerations that must be practised when using Nb3Sn cavities in applications. Finally, we conclude by summarizing the state-of-the-art and describing the outlook for this alternative SRF material.

[1]  A. Valente-Feliciano Superconducting RF materials other than bulk niobium: a review , 2016 .

[2]  J. Sethna,et al.  Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates , 2016, 1608.00175.

[3]  C. Reece Continuous wave superconducting radio frequency electron linac for nuclear physics research , 2016, 1606.03317.

[4]  M. Liepe,et al.  Surface Analysis Studies of Nb3Sn Thin Films , 2016 .

[5]  M. Liepe,et al.  RF Measurements on High Performance Nb3Sn Cavities , 2016 .

[6]  Cutout Study of a Nb3Sn Cavity , 2015 .

[7]  S. Aull,et al.  Secondary Electron Yield of SRF Materials , 2015 .

[8]  U. Pudasaini,et al.  Progress With Multi-Cell Nb3Sn Cavity Development Linked With Sample Materials Characterization , 2015 .

[9]  A. Romanenko,et al.  Fermilab Nb3Sn R&D Program , 2015 .

[10]  M. Liepe,et al.  Nb3Sn Cavities: Material Characterization and Coating Process Optimization , 2015 .

[11]  M. Liepe,et al.  Radio Frequency Magnetic Field Limits of Nb and Nb_{3}Sn. , 2015, Physical review letters.

[12]  M. Pellin,et al.  Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications , 2015, 1503.03410.

[13]  S. Posen Understanding And Overcoming Limitation Mechanisms In Nb3Sn Superconducting Rf Cavities , 2015 .

[14]  M. Bestetti,et al.  Synthesis of superconducting Nb3Sn coatings on Nb substrates , 2015 .

[15]  A. Romanenko,et al.  Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG , 2014, 1410.7877.

[16]  N. Valles Pushing The Frontiers Of Superconducting Radio Frequency Science: From The Temperature Dependence Of The Superheating Field Of Niobium To Higher-Order Mode Damping In Very High Quality Factor Accelerating Structures , 2014 .

[17]  Matthias Liepe,et al.  ANALYSIS OF SYSTEMATIC AND RANDOM ERROR IN SRF MATERIAL PARAMETER CALCULATIONS , 2014 .

[18]  Yinshun Wang Fundamental Elements of Applied Superconductivity in Electrical Engineering: Wang/Fundamental , 2013 .

[19]  Mike Harrison,et al.  The International Linear Collider Technical Design Report - Volume 1: Executive Summary , 2013, 1306.6329.

[20]  Mohamed H. Awida,et al.  PRESSURE SENSITIVITY CHARACTERIZATION OF SUPERCONDUCTING SPOKE CAVITIES , 2012 .

[21]  Matthias Liepe,et al.  Mechanical optimization of superconducting cavities in continuous wave operation , 2012 .

[22]  J. Sethna,et al.  Superheating field of superconductors within Ginzburg-Landau theory , 2010, 1008.4553.

[23]  M. Liepe,et al.  STOICHIOMETRIC Nb3Sn IN FIRST SAMPLES COATED AT CORNELL , 2011 .

[24]  Hasan Padamsee,et al.  RF Superconductivity: Science, Technology, and Applications , 2009 .

[25]  V. Palmieri,et al.  Nb3Sn FILMS BY MULTILAYER SPUTTERING , 2009 .

[26]  J. Sethna,et al.  Temperature dependence of the superheating field for superconductors in the high- κ London limit , 2008, 0810.4720.

[27]  Th. Tschentscher,et al.  Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness , 2006 .

[28]  Kenneth W. Herwig,et al.  The Spallation Neutron Source in Oak Ridge: A powerful tool for materials research , 2006 .

[29]  V. Palmieri,et al.  A15 superconductors: An alternative to niobium for RF cavities , 2006 .

[30]  R. Geng,et al.  Review of new shapes for higher gradients , 2006 .

[31]  A. Godeke,et al.  A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state , 2006, cond-mat/0606303.

[32]  A. Gurevich,et al.  Enhancement of RF breakdown field of superconductors by multilayer coating , 2006 .

[33]  Albertus Godeke,et al.  Performance boundaries in Nb3Sn superconductors , 2005 .

[34]  J. Fuerst,et al.  Superconducting Triple-Spoke Cavity for β=0.5 Ions , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[35]  E. Saur,et al.  Präparation und Supraleitungseigenschaften von Niobdrahtproben mit Nb3Sn-Überzug , 2004, Naturwissenschaften.

[36]  P. Kneisel,et al.  Gradient optimization for SC CW accelerators , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[37]  Raafat R. Mansour,et al.  Microwave superconductivity , 2002 .

[38]  P. Kneisel,et al.  Preliminary Experience with ''In-Site'' Baking of Niobium Cavities , 2000 .

[39]  Matthias Hein,et al.  High-temperature-superconductor thin films at microwave frequencies , 1999, Springer tracts in modern physics.

[40]  G. Muller,et al.  Nb/sub 3/Sn films on sapphire. A promising alternative for superconductive microwave technology , 1999, IEEE Transactions on Applied Superconductivity.

[41]  H. P. Kindermann,et al.  The LHC superconducting cavities , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[42]  Matthias Hein,et al.  High-quality Nb3Sn thin films on sapphire prepared by tin vapor diffusion , 1997 .

[43]  P. Kneisel,et al.  Results from some temperature mapping experiments on Nb{sub 3}Sn RF cavities , 1997 .

[44]  P. Kneisel,et al.  Nb$_{3}$Sn Layers on High-Purity Nb Cavities with Very High Quality Factors and Accelerating Gradients , 1996 .

[45]  P. Kneisel,et al.  Experience with High Pressure Ultrapure Water Rinsing of Niobium Cavities , 1993 .

[46]  C. Benvenuti SUPERCONDUCTING COATINGS FOR ACCELERATING RF CAVITIES: PAST, PRESENT, FUTURE , 1992 .

[47]  H. Safa,et al.  Power dissipation at high fields in granular RF superconductivity , 1991 .

[48]  R. Ringrose,et al.  Accelerating cavity development for the Cornell B-factory, CESR-B , 1991, Conference Record of the 1991 IEEE Particle Accelerator Conference.

[49]  J. Martignac,et al.  SUPERCONDUCTING NIOBIUM SPUTTER-COATED COPPER CAVITIES AT 1500 MHz , 1991 .

[50]  G. Muller,et al.  Nb/sub 3/Sn coating of high purity Nb cavities , 1989 .

[51]  M. Hakimi Bronze-processed Nb3Sn for r.f. applications☆ , 1988 .

[52]  S. A. Mucklejohn,et al.  The vapour pressure of tin(II) chloride and the standard molar Gibbs free energy change for formation of SnCl2(g) from Sn(g) and Cl2(g) , 1987 .

[53]  M. Peiniger,et al.  A Superconducting Nb3Sn Coated Multicell Accelerating Cavity , 1985, IEEE Transactions on Nuclear Science.

[54]  M. Tigner,et al.  Performance of superconducting storage ring cavities at 1500 MHz , 1985 .

[55]  I. Campisi High field RF superconductivity: To pulse or not to pulse? , 1984 .

[56]  M. Beasley,et al.  RF surface resistance of high-T c superconducting A15 thin films , 1983 .

[57]  K. Schnitzke,et al.  On the preparation of Nb3Sn-layers on monocrystalline Nb-substrates , 1980 .

[58]  M. Beasley,et al.  Critical fields, Pauli paramagnetic limiting, and material parameters ofNb3Sn andV3Si , 1979 .

[59]  P. Kneisel,et al.  Measurements of superconducting Nb 3 Sn cavities in the GHz range , 1979 .

[60]  H. Pfister,et al.  Superconducting Nb 3 Sn cavities with high microwave qualities , 1977 .

[61]  B. Hillenbrand,et al.  Superconducting Nb3Sn cavities with high quality factors and high critical flux densities , 1976 .

[62]  R. Hammond Electron beam evaporation synthesis of A15 superconducting compounds: Accomplishments and prospects , 1975 .

[63]  H. Pfister,et al.  Superconducting Nb 3 Sn-cavities , 1975 .

[64]  G. Gilmer,et al.  Grain boundary diffusion and growth of intermetallic layers: Nb3Sn , 1974 .

[65]  J. Hasse,et al.  On the microwave absorption of superconducting Nb3Sn , 1974 .

[66]  J. Charlesworth,et al.  Experimental work on the niobium-tin constitution diagram and related studies , 1970 .

[67]  J. Halbritter Comparison between measured and calculatedRF losses in the superconducting state , 1970 .

[68]  Cheng-shu Chang The kinetic theory of gases , 1970 .

[69]  J. Halbritter,et al.  Fortran-program for the computation of the surface impedance of superconductors , 1970 .

[70]  C. F. Old,et al.  The mechanism and kinetics of growth of the superconducting compound Nb3Sn , 1969 .

[71]  J. Matricon,et al.  Superheating fields in superconductors , 1967 .

[72]  B. Matthias,et al.  Superconductivity of Nb/sub 3/Ge , 1965 .

[73]  B. W. Maxfield,et al.  Superconducting Penetration Depth of Niobium , 1965 .

[74]  J. Livingston,et al.  Surface Barrier in Type-II Superconductors , 1964 .

[75]  H. A. Schwettman,et al.  Application of superconductivity to electron linear accelerators , 1964 .