Modal Intuitionistic Logics as Dialgebraic Logics

Duality is one of the key techniques in the categorical treatment of modal logics. From the duality between (modal) algebras and (descriptive) frames one derives e.g. completeness (via a syntactic characterisation of algebras) or definability (using a suitable version of the Goldblatt-Thomason theorem). This is by now well understood for classical modal logics and modal logics based on distributive lattices, via extensions of Stone and Priestley duality, respectively. What is conspicuously absent is a comprehensive treatment of modal intuitionistic logic. This is the gap we are closing in this paper. Our main conceptual insight is that modal intuitionistic logics do not appear as algebra/coalgebra dualities, but instead arise naturally as dialgebras. Our technical contribution is the development of dualities for dialgebras, together with their logics, that instantiate to large class of modal intuitionistic logics and their frames as special cases. We derive completeness and expressiveness results in this general case. For modal intuitionistic logic, this systematises the existing treatment in the literature.

[1]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[2]  Erik Poll,et al.  From Algebras and Coalgebras to Dialgebras , 2001, CMCS.

[3]  Dirk Pattinson,et al.  Coalgebraic semantics of modal logics: An overview , 2011, Theor. Comput. Sci..

[4]  Lex Hendriks,et al.  Intuitionistic implication without disjunction , 2012, J. Log. Comput..

[5]  Leo Esakia,et al.  Heyting Algebras , 2019, Trends in Logic.

[6]  Peter Morris,et al.  A Categorical Semantics for Inductive-Inductive Definitions , 2011, CALCO.

[7]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[8]  Alexander Kurz,et al.  Strongly Complete Logics for Coalgebras , 2012, Log. Methods Comput. Sci..

[9]  Robert Ian Goldblatt,et al.  Grothendieck Topology as Geometric Modality , 1981, Math. Log. Q..

[10]  Alexander Kurz,et al.  Free Modal Algebras: A Coalgebraic Perspective , 2007, CALCO.

[11]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[12]  Nicola Olivetti,et al.  Uniform labelled calculi for preferential conditional logics based on neighbourhood semantics , 2020, J. Log. Comput..

[13]  Sara Negri,et al.  Uniform Labelled Calculi for Conditional and Counterfactual Logics , 2019, WoLLIC.

[14]  Guram Bezhanishvili,et al.  Esakia Style Duality for Implicative Semilattices , 2013, Appl. Categorical Struct..

[15]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.

[16]  Alexander Kurz,et al.  The Goldblatt-Thomason Theorem for Coalgebras , 2007, CALCO.

[17]  Igor Urbas,et al.  Dual-Intuitionistic Logic , 1996, Notre Dame J. Formal Log..

[18]  Dov M. Gabbay,et al.  Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems , 1989, Logics and Models of Concurrent Systems.

[19]  Gisèle Fischer Servi,et al.  Semantics for a Class of Intuitionistic Modal Calculi , 1980 .

[20]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[21]  Alessandra Palmigiano,et al.  A coalgebraic view on positive modal logic , 2004, Theor. Comput. Sci..

[22]  Tadeusz Litak,et al.  Constructive Modalities with Provability Smack , 2017, ArXiv.

[23]  R. Goldblatt Mathematics of modality , 1993 .

[24]  Nick Bezhanishvili,et al.  Duality and Universal Models for the Meet-Implication Fragment of IPC , 2013, TbiLLC.

[25]  Helle Hvid Hansen,et al.  Bisimulation for Weakly Expressive Coalgebraic Modal Logics , 2017, CALCO.

[26]  Natasha Alechina,et al.  Intuitionistic Modal Logic: A 15-year retrospective , 2018, J. Log. Comput..

[27]  Yde Venema,et al.  Coalgebraic Geometric Logic , 2019, CALCO.

[28]  Philippe Balbiani,et al.  About intuitionistic public announcement logic , 2016, Advances in Modal Logic.

[29]  Sam Staton Relating Coalgebraic Notions of Bisimulation , 2009, CALCO.

[30]  Yoichi Hirai,et al.  An Intuitionistic Epistemic Logic for Sequential Consistency on Shared Memory , 2010, LPAR.

[31]  Dirk Pattinson,et al.  Cut elimination in coalgebraic logics , 2010, Inf. Comput..

[32]  Yale Weiss,et al.  Basic Intuitionistic Conditional Logic , 2018, J. Philos. Log..

[33]  Dirk Pattinson,et al.  Rank-1 Modal Logics are Coalgebraic , 2007, J. Log. Comput..

[34]  Shang-Wei Lin,et al.  Quasi-Open Bisimilarity with Mismatch is Intuitionistic , 2018, LICS.

[35]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[36]  M. Stone The theory of representations for Boolean algebras , 1936 .

[37]  Jim de Groot,et al.  Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic , 2019, WoLLIC.

[38]  Vincenzo Ciancia Interaction and Observation: Categorical Semantics of Reactive Systems Trough Dialgebras , 2013, CALCO.

[39]  Jennifer Nacht,et al.  Modal Logic An Introduction , 2016 .

[40]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[41]  Kensuke Kojima,et al.  Which classical correspondence is valid in intuitionistic modal logic? , 2012, Log. J. IGPL.

[42]  K. Dosen,et al.  Models for normal intuitionistic modal logics , 1984 .

[43]  Miodrag Rašković,et al.  An intuitionistic logic with probabilistic operators , 2003 .

[44]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[45]  Yale Weiss,et al.  Frontiers of Conditional Logic , 2019 .

[46]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[47]  Alexander Kurz,et al.  The Positivication of Coalgebraic Logics , 2018, CALCO.

[48]  Sergei N. Artëmov,et al.  INTUITIONISTIC EPISTEMIC LOGIC , 2014, The Review of Symbolic Logic.

[49]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[50]  Patrick J. Morandi Dualities in Lattice Theory , 2005 .

[51]  Alexander Kurz,et al.  Finitary Functors: From Set to Preord and Poset , 2011, CALCO.

[52]  Tatsuya Hagino,et al.  A categorical programming language , 2020, ArXiv.

[53]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[54]  Sumit Sourabh,et al.  Bisimulations for coalgebras on Stone spaces , 2018, J. Log. Comput..

[55]  Daniel Hausmann,et al.  Game-Based Local Model Checking for the Coalgebraic mu-Calculus , 2019, CONCUR.

[56]  Ross Horne,et al.  A Characterisation of Open Bisimilarity using an Intuitionistic Modal Logic , 2017, CONCUR.

[57]  J P Bogart,et al.  Sex in unisexual salamanders: discovery of a new sperm donor with ancient affinities , 2009, Heredity.

[58]  C. Rauszer An algebraic and Kripke-style approach to a certain extension of intuitionistic logic , 1980 .

[59]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[60]  R. A. Bull MIPC as the Formalisation of an Intuitionist Concept of Modality , 1966, J. Symb. Log..

[61]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[62]  Jennifer M. Davoren,et al.  On intuitionistic modal and tense logics and their classical companion logics: Topological semantics and bisimulations , 2009, Ann. Pure Appl. Log..

[63]  Gordon Plotkin,et al.  A framework for intuitionistic modal logics: extended abstract , 1986 .

[64]  On intuitionistic modal epistemic logic , 1992 .

[65]  Yokota Shinichi General Characterization Results on Intuitionistic Modal Propositional Logics , 1985 .

[66]  Anil Nerode,et al.  Tableaux for constructive concurrent dynamic logic , 2005, Ann. Pure Appl. Log..

[67]  Alexander Kurz,et al.  Ultrafilter Extensions for Coalgebras , 2005, CALCO.

[68]  Michael B. Smyth,et al.  Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[69]  Carlo Proietti,et al.  Intuitionistic Epistemic Logic, Kripke Models and Fitch’s Paradox , 2012, J. Philos. Log..

[70]  Marianna Girlando,et al.  On the Proof Theory of Conditional Logics , 2019 .

[71]  Helle Hvid Hansen,et al.  A Coalgebraic Perspective on Monotone Modal Logic , 2004, CMCS.

[72]  R. Goldblatt Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.

[73]  Yde Venema,et al.  Stone coalgebras , 2004, Theor. Comput. Sci..

[74]  S. K. Thomason,et al.  AXIOMATIC CLASSES IN PROPOSITIONAL MODAL LOGIC , 1975 .

[75]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[76]  Renate A. Schmidt,et al.  A bi-intuitionistic modal logic: Foundations and automation , 2016, J. Log. Algebraic Methods Program..

[77]  R. A. Bull A modal extension of intuitionist logic , 1965, Notre Dame J. Formal Log..

[78]  Kim G. Larsen,et al.  Unrestricted stone duality for Markov processes , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[79]  Ivano Ciardelli,et al.  Intuitionistic Conditional Logics , 2020, J. Philos. Log..

[80]  Gerhard Jäger,et al.  Intuitionistic common knowledge or belief , 2016, J. Appl. Log..

[81]  Alessandra Palmigiano,et al.  Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic , 2011, Ann. Pure Appl. Log..

[82]  Bartek Klin,et al.  Coalgebraic Modal Logic Beyond Sets , 2007, MFPS.

[83]  Alexander Kurz,et al.  Positive Fragments of Coalgebraic Logics , 2013, CALCO.

[84]  Alessandra Palmigiano,et al.  Coalgebra and Logic: A Brief Overview , 2010, J. Log. Comput..