Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies.

Using imaging polarimetry, we have measured some typical reflection-polarization patterns of plant surfaces (leaves and flowers) under different illuminations. Using a quantitative model to determine photon absorptions in the weakly polarization-sensitive (PS approximately 2) photoreceptors of Papilio butterflies, we have calculated the influence of reflection polarization on the colours of leaves and flowers perceived by PAPILIO: Compared with a retina containing polarization-blind colour receptors, the colour loci of specularly reflecting and, thus, strongly polarizing areas on a plant are slightly shifted, which could cause the perception of false colours. However, the colour of specularly reflecting surfaces is strongly masked by white glare, which may prevent the perception of polarization-induced hue shifts. Although the perception of polarizational false colours by Papilio butterflies was previously demonstrated with artificial, strongly colour-saturated and totally linearly polarized stimuli, we expect that the weak polarization sensitivity of Papilio photoreceptors hardly influences colour perception under natural conditions.

[1]  A. Kelber,et al.  Polarisation-dependent colour vision in Papilio butterflies. , 2001, The Journal of experimental biology.

[2]  T. Labhart,et al.  Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye , 2000, Journal of Comparative Physiology.

[3]  T. Labhart,et al.  Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.

[4]  Almut Kelber,et al.  Why ‘false’ colours are seen by butterflies , 1999, Nature.

[5]  A. Kelber,et al.  Ovipositing butterflies use a red receptor to see green , 1999, The Journal of experimental biology.

[6]  Lawrence B. Wolff,et al.  The Polarization of Light in a Tropical Rain Forest 1 , 1998 .

[7]  Horváth,et al.  Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects , 1997, The Journal of experimental biology.

[8]  K. Lunau,et al.  Innate colour preferences of flower visitors , 1995, Journal of Comparative Physiology A.

[9]  C. Przyrembel,et al.  Trichromatic color vision in the salamander (Salamandra salamandra) , 1995, Journal of Comparative Physiology A.

[10]  G. D. Bernard,et al.  Photoreceptor twist: a solution to the false-color problem. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Vern C. Vanderbilt,et al.  Polarized and specular reflectance variation with leaf surface features , 1993 .

[12]  K. Arikawa,et al.  Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity , 1992, Journal of Comparative Physiology A.

[13]  Anthony W. Sarto,et al.  Polarized Light Angle Reflectance Instrument I Polarized Incidence (POLAR:I) , 1990, Optics & Photonics.

[14]  L. Grant Diffuse and specular characteristics of leaf reflectance , 1987 .

[15]  K. Arikawa,et al.  Pentachromatic visual system in a butterfly , 1987, Naturwissenschaften.

[16]  Vern C. Vanderbilt,et al.  Polarized and non-polarized leaf reflectances of Coleus blumei , 1987 .

[17]  Vern C. Vanderbilt,et al.  Variations in the polarized leaf reflectance of Sorghum Bicolor , 1987 .

[18]  L. Grant,et al.  Polarization photometer to measure bidirectional reflectance factor R(55∞, 0∞; 55∞, 180∞) of leaves , 1986 .

[19]  V. Vanderbilt,et al.  Plant Canopy Specular Reflectance Model , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Rüdiger Wehner,et al.  The POL area of the honey bee's eye: behavioural evidence , 1985 .

[21]  B F Robinson,et al.  Specular, diffuse, and polarized light scattered by two wheat canopies. , 1985, Applied optics.

[22]  L. Grant,et al.  Polarization of light scattered by vegetation , 1985, Proceedings of the IEEE.

[23]  C. Stirton,et al.  Pigment distribution, light reflection and cell structure in petals , 1981 .

[24]  Thomas Labhart,et al.  Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: Polarizational and angular sensitivity , 1980, Journal of comparative physiology.

[25]  K. Daumer Kontrastempfindlichkeit der Bienen für „weiss“ verschiedenen UV-Gehalts , 1963, Zeitschrift für vergleichende Physiologie.

[26]  T. Labhart The electrophysiology of photoreceptors in different eye regions of the desert ant,Cataglyphis bicolor , 2004, Journal of Comparative Physiology A.

[27]  R. Schmidt,et al.  Progress in Sensory Physiology , 1991, Progress in Sensory Physiology.

[28]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[29]  Karl von Frisch,et al.  Tanzsprache und Orientierung der Bienen , 1965 .