PL, magneto‐PL and PLE of the trimetallic nitride template fullerene Er3N@C80

Er3N@C80 exhibits sharp optical emission lines in the near-infrared attributed to fluorescence from the Er3+ ion. Here we demonstrate that high magnetic fields cause this spectrum to split, corresponding to transitions from the lowest field-split Kramers doublet of the 4I13/2 manifold to the four lowest field-split levels of the 4I15/2 manifold. The internal structure of these fullerenes can be spatially aligned with a preferred orientation under high magnetic field; the effect of alignment is to reduce the broadening associated with the isotropic spatial averaging characteristic of powder or frozen-solution spectra. Using a tunable 1.5 μm laser, we directly observe non-cage-mediated optical interactions with the Er3+ ion. This spectroscopic method provides the opportunity to map the energy level structure of the incarcerated ion and to coherently control its quantum state. These qualities suggest that rare-earth endohedral fullerenes have characteristics that could be employed as a readout pathway for fullerene-based quantum information processing. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  K. R. Huffman,et al.  Spectroscopic studies of fullerenes doped with rare earth and transition metal ions , 1995 .

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Roger M. Macfarlane,et al.  Fluorescence spectroscopy and emission lifetimes of Er3+ in ErxSc3−xN@C80 (x=1–3) , 2001 .

[5]  Iwan Holleman,et al.  High frequency electron spin resonance in Erm@C2n , 1995 .

[6]  Gavin W. Morley,et al.  Nanoscale solid-state quantum computing , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  N. Ioannidis,et al.  Dual-mode X-band EPR study of two isomers of the endohedral metallofullerene Er@C(82). , 2001, Journal of the American Chemical Society.

[8]  S. A. Lyon,et al.  Bang–bang control of fullerene qubits using ultrafast phase gates , 2006, quant-ph/0601008.

[9]  Koichi Kikuchi,et al.  Characterization of the Isolated Y@C82 , 1994 .

[10]  A. Balch,et al.  Preparation and crystallographic characterization of a new endohedral, Lu3N@C80.5 (o-xylene), and comparison with Sc3N@C80.5 (o-xylene). , 2002, Chemistry.

[11]  Marilyn M. Olmstead,et al.  Isolation and Structural Characterization of the Endohedral Fullerene Sc3N@C78 , 2001 .

[12]  Marilyn M. Olmstead,et al.  Isolation and Crystallographic Characterization of ErSc2N@C80: an Endohedral Fullerene Which Crystallizes with Remarkable Internal Order , 2000 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Weidinger,et al.  Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C60. , 1996, Physical review letters.

[15]  M. Krause,et al.  Structure and stability of endohedral fullerene Sc3N@C80: A Raman, infrared, and theoretical analysis , 2001 .

[16]  Georg Wittmann,et al.  Measurement of Pair Interactions and1.5μmEmission fromEr3+Ions in aC82Fullerene Cage , 1997 .

[17]  M. F. Reid,et al.  Free‐ion, crystal‐field, and spin‐correlated crystal‐field parameters for lanthanide ions in Cs2NaLnCl6 and Cs2NaYCl6:Ln3+ systems , 1985 .

[18]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[20]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[21]  Wolfgang Harneit,et al.  Fullerene-based electron-spin quantum computer , 2002 .

[22]  Arzhang Ardavan,et al.  Direct optical excitation of a fullerene-incarcerated metal ion , 2006 .