Real AdaBoost for large vocabulary image classification

In this paper, we describe the use of a Boosting algorithm, Real AdaBoost, for content-based image retrieval (CBIR) on a large number (190) of keyword categories. Previous work with Boosting for image orientation detection has involved only a few categories, such as a simple outdoor vs. indoor scene dichotomy. Other work with CBIR has incorporated Boosting into relevance feedback for a form of supervised learning based on end-userspsila evaluation, but here we use AdaBoost as a purely learning algorithm to reduce noisy and outlier information. For the 190-category classification task, Real AdaBoost with its own final learner model outperformed the k-nearest neighbour (K-NN) classifier in terms of precision.

[1]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[3]  Sethuraman Panchanathan,et al.  A critical evaluation of image and video indexing techniques in the compressed domain , 1999, Image Vis. Comput..

[4]  Simone Santini,et al.  In search of information in visual media , 1997, CACM.

[5]  John Tait,et al.  Qualitative evaluation of automatic assignment of keywords to images , 2006, Inf. Process. Manag..

[6]  Thierry Pun,et al.  A Framework for Benchmarking in CBIR , 2003, Multimedia Tools and Applications.

[7]  Sethuraman Panchanathan,et al.  Review of Image and Video Indexing Techniques , 1997, J. Vis. Commun. Image Represent..

[8]  Chih-Fong Tsai Automatically annotating images with keywords , 2005 .

[9]  Nicu Sebe,et al.  Boosting contextual information in content-based image retrieval , 2004, MIR '04.

[10]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[11]  Michael S. Lew,et al.  Principles of Visual Information Retrieval , 2001, Advances in Pattern Recognition.

[12]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[13]  Mingjing Li,et al.  Boosting image orientation detection with indoor vs. outdoor classification , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[14]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[16]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[17]  Mohan S. Kankanhalli,et al.  Perspectives on Content-Based Multimedia Systems , 2000, The Information Retrieval Series.

[18]  Yoav Freund,et al.  Game theory, on-line prediction and boosting , 1996, COLT '96.

[19]  Jamshid Shanbehzadeh,et al.  Image indexing and retrieval techniques: past, present, and next , 1999, Electronic Imaging.

[20]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[21]  Paul A. Viola,et al.  Boosting Image Retrieval , 2004, International Journal of Computer Vision.

[22]  Naphtali Rishe,et al.  Content-based image retrieval , 1995, Multimedia Tools and Applications.

[23]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[24]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Paul Thompson,et al.  Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW , 2002, Information Retrieval.

[26]  Stefan M. Rüger,et al.  Evaluation of Texture Features for Content-Based Image Retrieval , 2004, CIVR.

[27]  Nuno Vasconcelos,et al.  Bridging the Gap: Query by Semantic Example , 2007, IEEE Transactions on Multimedia.

[28]  Aura Conci,et al.  Comparing the influence of color spaces and metrics in content-based image retrieval , 1998, Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237).