A folded conformation of MukBEF and cohesin

[1]  A. Kruse,et al.  In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex. , 2018, Molecular cell.

[2]  D. Panne,et al.  Structural basis for Scc3-dependent cohesin recruitment to chromatin , 2018, eLife.

[3]  K. Nasmyth,et al.  Scc2 Is a Potent Activator of Cohesin’s ATPase that Promotes Loading by Binding Scc1 without Pds5 , 2018, Molecular cell.

[4]  Lutz Fischer,et al.  In-Search Assignment of Monoisotopic Peaks Improves the Identification of Cross-Linked Peptides , 2018, bioRxiv.

[5]  A. Barducci,et al.  DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes , 2018, bioRxiv.

[6]  M. Yanagida,et al.  Suppressor mutation analysis combined with 3D modeling explains cohesin’s capacity to hold and release DNA , 2018, Proceedings of the National Academy of Sciences.

[7]  Cees Dekker,et al.  Real-time imaging of DNA loop extrusion by condensin , 2018, Science.

[8]  A. Cournac,et al.  Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins , 2018, Cell.

[9]  D. Sherratt,et al.  MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin , 2018, eLife.

[10]  Shveta Bisht,et al.  Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes , 2017, Cell.

[11]  K. Nasmyth,et al.  The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms , 2017, Cell.

[12]  C. Wyman,et al.  The bacterial condensin MukB compacts DNA by sequestering supercoils and stabilizing topologically isolated loops , 2017, The Journal of Biological Chemistry.

[13]  B. Oh,et al.  Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization , 2017, Molecular cell.

[14]  Cees Dekker,et al.  The condensin complex is a mechanochemical motor that translocates along DNA , 2017, Science.

[15]  J. Rappsilber,et al.  Optimizing the Parameters Governing the Fragmentation of Cross-Linked Peptides in a Tribrid Mass Spectrometer , 2017, Analytical chemistry.

[16]  J. Rappsilber,et al.  Quirks of Error Estimation in Cross-Linking/Mass Spectrometry , 2017, Analytical chemistry.

[17]  S. Gruber,et al.  Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin , 2017, Molecular cell.

[18]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[19]  M. Laub,et al.  CHROMOSOMES: Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus , 2017 .

[20]  L. Pearl,et al.  Specialized interfaces of Smc5/6 control hinge stability and DNA association , 2017, Nature Communications.

[21]  M. Singleton,et al.  Structure of the cohesin loader Scc2 , 2017, Nature Communications.

[22]  K. Nasmyth,et al.  Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins , 2017, Current Biology.

[23]  Rafael Fernandez-Leiro,et al.  A pipeline approach to single-particle processing in RELION , 2016, bioRxiv.

[24]  J. Peters,et al.  Topology and structure of an engineered human cohesin complex bound to Pds5B , 2016, Nature Communications.

[25]  O. Song,et al.  ATP‐dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex , 2016, The EMBO journal.

[26]  D. G. Gibson,et al.  Design and synthesis of a minimal bacterial genome , 2016, Science.

[27]  Yan Li,et al.  Structure of the Pds5-Scc1 Complex and Implications for Cohesin Function. , 2016, Cell reports.

[28]  T. Hirano,et al.  Condensin-Based Chromosome Organization from Bacteria to Vertebrates , 2016, Cell.

[29]  K. Nasmyth,et al.  Crystal Structure of the Cohesin Gatekeeper Pds5 and in Complex with Kleisin Scc1 , 2016, Cell reports.

[30]  S. Gruber,et al.  Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA , 2016, Cell reports.

[31]  C. Dekker,et al.  Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic , 2016, Cell reports.

[32]  D. Sherratt,et al.  MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation , 2016, Nature Communications.

[33]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[34]  Lutz Fischer,et al.  A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides , 2015, Molecular & Cellular Proteomics.

[35]  F. Uhlmann,et al.  DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism , 2015, Cell.

[36]  J. Palecek,et al.  Kite Proteins: a Superfamily of SMC/Kleisin Partners Conserved Across Bacteria, Archaea, and Eukaryotes. , 2015, Structure.

[37]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[38]  Vincent M. Waldman,et al.  Structural mapping of the coiled‐coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins , 2015, Proteins.

[39]  B. Oh,et al.  SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis , 2015, eLife.

[40]  K. Miyazaki Molecular engineering of a PheS counterselection marker for improved operating efficiency in Escherichia coli. , 2015, BioTechniques.

[41]  Nam Ki Lee,et al.  Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding , 2015, Molecular cell.

[42]  Ruedi Aebersold,et al.  Characterization of a DNA exit gate in the human cohesin ring , 2014, Science.

[43]  Kim Nasmyth,et al.  Closing the cohesin ring: Structure and function of its Smc3-kleisin interface , 2014, Science.

[44]  W. Baumeister,et al.  Volta potential phase plate for in-focus phase contrast transmission electron microscopy , 2014, Proceedings of the National Academy of Sciences.

[45]  J. Berger,et al.  Structural basis for the MukB‐topoisomerase IV interaction and its functional implications in vivo , 2013, The EMBO journal.

[46]  Randy J. Read,et al.  Phaser.MRage: automated molecular replacement , 2013, Acta crystallographica. Section D, Biological crystallography.

[47]  K. Nasmyth,et al.  Pds5 promotes and protects cohesin acetylation , 2013, Proceedings of the National Academy of Sciences.

[48]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[49]  S. Benkovic,et al.  Replication clamps and clamp loaders. , 2013, Cold Spring Harbor perspectives in biology.

[50]  B. Oh,et al.  An asymmetric SMC–kleisin bridge in prokaryotic condensin , 2013, Nature Structural &Molecular Biology.

[51]  D. Sherratt,et al.  In Vivo Architecture and Action of Bacterial Structural Maintenance of Chromosome Proteins , 2012, Science.

[52]  John F. Marko,et al.  Self-organization of domain structures by DNA-loop-extruding enzymes , 2012, Nucleic acids research.

[53]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[54]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[55]  Vincent M. Waldman,et al.  A repeated coiled-coil interruption in the Escherichia coli condensin MukB. , 2011, Journal of molecular biology.

[56]  C. Haering,et al.  Condensin structures chromosomal DNA through topological links , 2011, Nature Structural &Molecular Biology.

[57]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[58]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[59]  T. Richmond,et al.  Robots, pipelines, polyproteins: Enabling multiprotein expression in prokaryotic and eukaryotic cells , 2011, Journal of Structural Biology.

[60]  K. Nasmyth,et al.  ATP Hydrolysis Is Required for Relocating Cohesin from Sites Occupied by Its Scc2/4 Loading Complex , 2011, Current Biology.

[61]  Tıp In-Gel Digestion , 2010 .

[62]  Yongchao Liu,et al.  MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities , 2010, Bioinform..

[63]  B. Oh,et al.  Crystal structure of the MukB hinge domain with coiled‐coil stretches and its functional implications , 2010, Proteins.

[64]  G. Witte,et al.  Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins , 2010, Nucleic acids research.

[65]  P. Cramer,et al.  Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry , 2010, EMBO Journal.

[66]  J. Berger,et al.  The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB. , 2010, Journal of molecular biology.

[67]  Keehyoung Joo,et al.  Structural Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption of Intersubunit Interactions , 2009, Cell.

[68]  Carola Engler,et al.  A One Pot, One Step, Precision Cloning Method with High Throughput Capability , 2008, PloS one.

[69]  T. Richmond,et al.  MultiBac: Multigene Baculovirus‐Based Eukaryotic Protein Complex Production , 2008, Current protocols in protein science.

[70]  Mona Singh,et al.  Predicting functionally important residues from sequence conservation , 2007, Bioinform..

[71]  Trisha N Davis,et al.  In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae , 2007, The EMBO journal.

[72]  T. Hirano,et al.  Reconstitution and subunit geometry of human condensin complexes , 2007, The EMBO journal.

[73]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[74]  Z. M. Petrushenko,et al.  Antagonistic Interactions of Kleisins and DNA with Bacterial Condensin MukB* , 2006, Journal of Biological Chemistry.

[75]  K. Nasmyth,et al.  Evidence that Loading of Cohesin Onto Chromosomes Involves Opening of Its SMC Hinge , 2006, Cell.

[76]  N. Costantino,et al.  A set of recombineering plasmids for gram-negative bacteria. , 2006, Gene.

[77]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[78]  Kevin Cowtan,et al.  The Buccaneer software for automated model building , 2006 .

[79]  Jan Löwe,et al.  Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology. , 2005, Progress in biophysics and molecular biology.

[80]  J. Berger,et al.  The MukF subunit of Escherichia coli condensin: architecture and functional relationship to kleisins , 2005, The EMBO journal.

[81]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[82]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[83]  J. Yates,et al.  Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. , 2004, Molecular biology of the cell.

[84]  K. Hopfner,et al.  Structural Biochemistry of ATP-Driven Dimerization and DNA-Stimulated Activation of SMC ATPases , 2004, Current Biology.

[85]  Kim Nasmyth,et al.  Structure and stability of cohesin's Smc1-kleisin interaction. , 2004, Molecular cell.

[86]  E. Revenkova,et al.  DNA Interaction and Dimerization of Eukaryotic SMC Hinge Domains* , 2004, Journal of Biological Chemistry.

[87]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[88]  Kim Nasmyth,et al.  Molecular architecture of SMC proteins and the yeast cohesin complex. , 2002, Molecular cell.

[89]  M. Delorenzi,et al.  An HMM model for coiled-coil domains and a comparison with PSSM-based predictions , 2002, Bioinform..

[90]  M. Yanagida,et al.  Condensin Architecture and Interaction with DNA Regulatory Non-SMC Subunits Bind to the Head of SMC Heterodimer , 2002, Current Biology.

[91]  H. Erickson,et al.  Condensin and cohesin display different arm conformations with characteristic hinge angles , 2002, The Journal of cell biology.

[92]  J. Löwe,et al.  Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. , 2001, Journal of molecular biology.

[93]  H. Niki,et al.  Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli , 1999, The EMBO journal.

[94]  R. B. Jensen,et al.  The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[95]  K. Nairz,et al.  A Central Role for Cohesins in Sister Chromatid Cohesion, Formation of Axial Elements, and Recombination during Yeast Meiosis , 1999, Cell.

[96]  H. Erickson,et al.  The Symmetrical Structure of Structural Maintenance of Chromosomes (SMC) and MukB Proteins: Long, Antiparallel Coiled Coils, Folded at a Flexible Hinge , 1998, The Journal of cell biology.

[97]  A. Grossman,et al.  Characterization of a prokaryotic SMC protein involved in chromosome partitioning. , 1998, Genes & development.

[98]  V. Guacci,et al.  A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in S. cerevisiae , 1997, Cell.

[99]  K. Nasmyth,et al.  Cohesins: Chromosomal Proteins that Prevent Premature Separation of Sister Chromatids , 1997, Cell.

[100]  T. Ogura,et al.  Identification of two new genes,mukE andmukF, involved in chromosome partitioning inEscherichia coli , 1996, Molecular and General Genetics MGG.

[101]  T. Mitchison,et al.  A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro , 1994, Cell.

[102]  M. Yanagida,et al.  Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. , 1994, The EMBO journal.

[103]  T. Ogura,et al.  E.coli MukB protein involved in chromosome partition forms a homodimer with a rod‐and‐hinge structure having DNA binding and ATP/GTP binding activities. , 1992, The EMBO journal.

[104]  T. Ogura,et al.  The new gene mukB codes for a 177 kd protein with coiled‐coil domains involved in chromosome partitioning of E. coli. , 1991, The EMBO journal.

[105]  U. K. Laemmli,et al.  Metaphase chromosome structure: Evidence for a radial loop model , 1979, Cell.

[106]  K. Nasmyth,et al.  Scc2 Is a Potent Activator of Cohesin’s ATPase that Promotes Loading by Binding Scc1 without Pds5 , 2018, Molecular cell.

[107]  K. Nasmyth,et al.  Structure and Stability of Cohesin ’ s Smc 1-Kleisin Interaction , 2004 .

[108]  K. Nasmyth THE GENOME : Joining , Resolving , and Separating Sister Chromatids During Mitosis and Meiosis , 2006 .

[109]  T. Ogura,et al.  Identification of two new genes , 1996 .

[110]  W. Wooster,et al.  Crystal structure of , 2005 .

[111]  C. Coulson,et al.  Molecular Architecture , 1953, Nature.

[112]  Ballard,et al.  Overview of the CCP 4 suite and current developments , 2022 .