A Discrete Probabilistic Approach to Dense Flow Visualization

Dense flow visualization is a popular visualization paradigm. Traditionally, the various models and methods in this area use a continuous formulation, resting upon the solid foundation of functional analysis. In this work, we examine a discrete formulation of dense flow visualization. From probability theory, we derive a similarity matrix that measures the similarity between different points in the flow domain, leading to the discovery of a whole new class of visualization models. Using this matrix, we propose a novel visualization approach consisting of the computation of spectral embeddings, i.e., characteristic domain maps, defined by particle mixture probabilities. These embeddings are scalar fields that give insight into the mixing processes of the flow on different scales. The approach of spectral embeddings is already well studied in image segmentation, and we see that spectral embeddings are connected to Fourier expansions and frequencies. We showcase the utility of our method using different 2D and 3D flows.

[1]  Daniel Weiskopf GPU-Based Interactive Visualization Techniques (Mathematics and Visualization) , 2006 .

[2]  David L. Kao,et al.  A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields , 1998, IEEE Trans. Vis. Comput. Graph..

[3]  Gerik Scheuermann,et al.  The State of the Art in Flow Visualization: Partition-Based Techniques , 2008, SimVis.

[4]  E. Gröller,et al.  Fast oriented line integral convolution for vector field visualization via the Internet , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[5]  Emil M. Constantinescu,et al.  PETSc/TS: A Modern Scalable ODE/DAE Solver Library , 2018, 1806.01437.

[6]  Jens H. Krüger,et al.  Dense flow visualization using wave interference , 2012, 2012 IEEE Pacific Visualization Symposium.

[7]  Daniel Weiskopf Iterative Twofold Line Integral Convolution for Texture-Based Vector Field Visualization , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[8]  Ingrid Hotz,et al.  Combinatorial 2D Vector Field Topology Extraction and Simplification , 2011, Topological Methods in Data Analysis and Visualization.

[9]  Andrzej Szymczak,et al.  Visualization of Morse Connection Graphs for Topologically Rich 2D Vector Fields , 2013, IEEE Transactions on Visualization and Computer Graphics.

[10]  Jarke J. van Wijk,et al.  Image based flow visualization , 2002, ACM Trans. Graph..

[11]  Gerik Scheuermann,et al.  Streamline Predicates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.

[13]  Axel Voigt,et al.  Transfer operator-based extraction of coherent features on surfaces , 2015 .

[14]  Markus Hadwiger,et al.  Probability Maps for the Visualization of Assimilation Ensemble Flow Data , 2015, EnvirVis@EuroVis.

[15]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Konstantin Mischaikow,et al.  Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  Daniel Weiskopf,et al.  Hierarchical Line Integration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[18]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[19]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[20]  Denis S. Grebenkov,et al.  Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..

[21]  Peter Hastreiter,et al.  Interactive exploration of volume line integral convolution based on 3D-texture mapping , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[22]  Kun Huang,et al.  A unifying theorem for spectral embedding and clustering , 2003, AISTATS.

[23]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[24]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[25]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[26]  Sangmin Seo,et al.  Extreme-Scale Stochastic Particle Tracing for Uncertain Unsteady Flow Visualization and Analysis , 2019, IEEE Transactions on Visualization and Computer Graphics.

[27]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[28]  David L. Kao,et al.  Enhanced line integral convolution with flow feature detection , 1997, Electronic Imaging.

[29]  Robert S. Laramee,et al.  Mesh-Driven Vector Field Clustering and Visualization: An Image-Based Approach , 2012, IEEE Transactions on Visualization and Computer Graphics.

[30]  Alexandru Telea,et al.  Simplified representation of vector fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[31]  Hans-Peter Seidel,et al.  Extracting higher order critical points and topological simplification of 3D vector fields , 2005, VIS 05. IEEE Visualization, 2005..

[32]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[33]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[34]  Harald Garcke,et al.  A continuous clustering method for vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[35]  Bernd Hamann,et al.  Construction of vector field hierarchies , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[36]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[37]  Gerik Scheuermann,et al.  Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains , 2012, IEEE Transactions on Visualization and Computer Graphics.

[38]  Christian Rössl,et al.  Streamline Embedding for 3D Vector Field Exploration , 2012, IEEE Transactions on Visualization and Computer Graphics.

[39]  Alan George,et al.  A new release of SPARSPAK: the Waterloo sparse matrix package , 1984, SGNM.

[40]  Bernd Hamann,et al.  Structure-accentuating Dense Flow Visualization , 2006, EuroVis.

[41]  Detlev Stalling,et al.  Fast texture based algorithms for vector field visualization , 1999 .

[42]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[43]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[44]  Jens H. Krüger,et al.  A Metric for the Evaluation of Dense Vector Field Visualizations , 2013, IEEE Transactions on Visualization and Computer Graphics.

[45]  Martin Rumpf,et al.  Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000, IEEE Trans. Vis. Comput. Graph..

[46]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[47]  Rüdiger Westermann,et al.  Numerical Simulations on PC Graphics Hardware , 2004, PVM/MPI.

[48]  Axel Brandenburg,et al.  Decay of helical and nonhelical magnetic knots. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Stanley C. Eisenstat,et al.  The (New) Yale Sparse Matrix Package , 1984 .

[50]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..