A Discrete Probabilistic Approach to Dense Flow Visualization
暂无分享,去创建一个
[1] Daniel Weiskopf. GPU-Based Interactive Visualization Techniques (Mathematics and Visualization) , 2006 .
[2] David L. Kao,et al. A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields , 1998, IEEE Trans. Vis. Comput. Graph..
[3] Gerik Scheuermann,et al. The State of the Art in Flow Visualization: Partition-Based Techniques , 2008, SimVis.
[4] E. Gröller,et al. Fast oriented line integral convolution for vector field visualization via the Internet , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[5] Emil M. Constantinescu,et al. PETSc/TS: A Modern Scalable ODE/DAE Solver Library , 2018, 1806.01437.
[6] Jens H. Krüger,et al. Dense flow visualization using wave interference , 2012, 2012 IEEE Pacific Visualization Symposium.
[7] Daniel Weiskopf. Iterative Twofold Line Integral Convolution for Texture-Based Vector Field Visualization , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.
[8] Ingrid Hotz,et al. Combinatorial 2D Vector Field Topology Extraction and Simplification , 2011, Topological Methods in Data Analysis and Visualization.
[9] Andrzej Szymczak,et al. Visualization of Morse Connection Graphs for Topologically Rich 2D Vector Fields , 2013, IEEE Transactions on Visualization and Computer Graphics.
[10] Jarke J. van Wijk,et al. Image based flow visualization , 2002, ACM Trans. Graph..
[11] Gerik Scheuermann,et al. Streamline Predicates , 2006, IEEE Transactions on Visualization and Computer Graphics.
[12] Lisa K. Forssell. Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.
[13] Axel Voigt,et al. Transfer operator-based extraction of coherent features on surfaces , 2015 .
[14] Markus Hadwiger,et al. Probability Maps for the Visualization of Assimilation Ensemble Flow Data , 2015, EnvirVis@EuroVis.
[15] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[16] Konstantin Mischaikow,et al. Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.
[17] Daniel Weiskopf,et al. Hierarchical Line Integration , 2011, IEEE Transactions on Visualization and Computer Graphics.
[18] Robert S. Laramee,et al. The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.
[19] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[20] Denis S. Grebenkov,et al. Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..
[21] Peter Hastreiter,et al. Interactive exploration of volume line integral convolution based on 3D-texture mapping , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).
[22] Kun Huang,et al. A unifying theorem for spectral embedding and clustering , 2003, AISTATS.
[23] Pascal Frossard,et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.
[24] Brian Cabral,et al. Imaging vector fields using line integral convolution , 1993, SIGGRAPH.
[25] G. Haller. An objective definition of a vortex , 2004, Journal of Fluid Mechanics.
[26] Sangmin Seo,et al. Extreme-Scale Stochastic Particle Tracing for Uncertain Unsteady Flow Visualization and Analysis , 2019, IEEE Transactions on Visualization and Computer Graphics.
[27] G. Haller. Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .
[28] David L. Kao,et al. Enhanced line integral convolution with flow feature detection , 1997, Electronic Imaging.
[29] Robert S. Laramee,et al. Mesh-Driven Vector Field Clustering and Visualization: An Image-Based Approach , 2012, IEEE Transactions on Visualization and Computer Graphics.
[30] Alexandru Telea,et al. Simplified representation of vector fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).
[31] Hans-Peter Seidel,et al. Extracting higher order critical points and topological simplification of 3D vector fields , 2005, VIS 05. IEEE Visualization, 2005..
[32] Jianbo Shi,et al. Learning Segmentation by Random Walks , 2000, NIPS.
[33] J. van Wijk,et al. Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.
[34] Harald Garcke,et al. A continuous clustering method for vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).
[35] Bernd Hamann,et al. Construction of vector field hierarchies , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).
[36] Hans-Christian Hege,et al. Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.
[37] Gerik Scheuermann,et al. Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains , 2012, IEEE Transactions on Visualization and Computer Graphics.
[38] Christian Rössl,et al. Streamline Embedding for 3D Vector Field Exploration , 2012, IEEE Transactions on Visualization and Computer Graphics.
[39] Alan George,et al. A new release of SPARSPAK: the Waterloo sparse matrix package , 1984, SGNM.
[40] Bernd Hamann,et al. Structure-accentuating Dense Flow Visualization , 2006, EuroVis.
[41] Detlev Stalling,et al. Fast texture based algorithms for vector field visualization , 1999 .
[42] Lambertus Hesselink,et al. Representation and display of vector field topology in fluid flow data sets , 1989, Computer.
[43] Hans Hagen,et al. Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..
[44] Jens H. Krüger,et al. A Metric for the Evaluation of Dense Vector Field Visualizations , 2013, IEEE Transactions on Visualization and Computer Graphics.
[45] Martin Rumpf,et al. Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000, IEEE Trans. Vis. Comput. Graph..
[46] Hans-Christian Hege,et al. Fast and resolution independent line integral convolution , 1995, SIGGRAPH.
[47] Rüdiger Westermann,et al. Numerical Simulations on PC Graphics Hardware , 2004, PVM/MPI.
[48] Axel Brandenburg,et al. Decay of helical and nonhelical magnetic knots. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[49] Stanley C. Eisenstat,et al. The (New) Yale Sparse Matrix Package , 1984 .
[50] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..