THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE “GREEN PEA” GALAXIES

Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with the highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I λ3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II λ4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.

[1]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[2]  M. Moll'a,et al.  popstar evolutionary synthesis models II: optical emission-line spectra from giant H ii regions , 2009, 0912.4730.

[3]  R. D. Carvalho,et al.  Massive star populations in Wolf–Rayet galaxies , 2004, astro-ph/0409114.

[4]  Synthetic Spectra of H Balmer and He I Absorption Lines. II. Evolutionary Synthesis Models for Starburst and Poststarburst Galaxies , 1999, astro-ph/9907116.

[5]  William D. Vacca,et al.  New Models for Wolf-Rayet and O Star Populations in Young Starbursts , 1997, astro-ph/9711140.

[6]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[7]  H. Ford,et al.  LOCAL LYMAN BREAK GALAXY ANALOGS: THE IMPACT OF MASSIVE STAR-FORMING CLUMPS ON THE INTERSTELLAR MEDIUM AND THE GLOBAL STRUCTURE OF YOUNG, FORMING GALAXIES , 2009, 0910.1352.

[8]  C. Evans,et al.  Rotating massive main-sequence stars: II. Simulating a population of LMC early B-type stars as a test of rotational mixing , 2011, 1102.0766.

[9]  K. Shimasaku,et al.  FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Lyα EMITTERS, , 2012, 1208.3260.

[10]  Henry C. Ferguson,et al.  The Lyman Continuum in Starburst Galaxies Observed with the Hopkins Ultraviolet Telescope , 1995 .

[11]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[12]  J. Brinchmann,et al.  Strongly star forming galaxies in the local Universe with nebular He iiλ4686 emission , 2012, 1201.1290.

[13]  M. Pettini,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 * , 2001 .

[14]  M. Donahue,et al.  EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.

[15]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[16]  David Schiminovich,et al.  EXTREME FEEDBACK AND THE EPOCH OF REIONIZATION: CLUES IN THE LOCAL UNIVERSE , 2011, 1101.4219.

[17]  E. Pellegrini,et al.  SINGLE-STAR H ii REGIONS AS A PROBE OF MASSIVE STAR SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1212.5487.

[18]  Ukraine,et al.  High-Ionization Emission in Metal-deficient Blue Compact Dwarf Galaxies , 2005, astro-ph/0507209.

[19]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[20]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[21]  J. Schmitt,et al.  X-RAYS FROM BLUE COMPACT DWARF GALAXIES , 2011, 1108.2426.

[22]  R. Chevalier,et al.  Supernova Remnants in the Fossil Starburst in M82 , 1999, astro-ph/9910064.

[23]  Claus Leitherer,et al.  Optimization of Starburst99 for Intermediate-Age and Old Stellar Populations , 2004, astro-ph/0412491.

[24]  L. Cowie,et al.  High-Resolution Optical and Ultraviolet Absorption-Line Studies of Interstellar Gas , 1986 .

[25]  VLT/GIRAFFE spectroscopic observations of the metal-poor blue compact dwarf galaxy SBS 0335–052E , 2006, astro-ph/0608203.

[26]  Chandra Observations of the Three Most Metal Deficient Blue Compact Dwarf Galaxies Known in the Local Universe, SBS 0335–052, SBS 0335–052W, and I Zw 18 , 2004, astro-ph/0401349.

[27]  Linda J. Smith,et al.  Realistic ionizing fluxes for young stellar populations from 0.05 to 2 Z , 2002, astro-ph/0207554.

[28]  M. Ouchi,et al.  Ionization state of inter-stellar medium in galaxies: evolution, SFR-M * -Z dependence, and ionizing photon escape , 2013, 1309.0207.

[29]  RADIO-INFRARED SUPERNEBULAE IN II Zw 40 , 2002, astro-ph/0208077.

[30]  R. Kudritzki Line-driven Winds, Ionizing Fluxes, and Ultraviolet Spectra of Hot Stars at Extremely Low Metallicity. I. Very Massive O Stars , 2002, astro-ph/0205210.

[31]  M. Franx,et al.  LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.

[32]  Jr.,et al.  OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES , 2010, 1007.4547.

[33]  J. V'ilchez,et al.  THE STAR FORMATION HISTORY AND METAL CONTENT OF THE GREEN PEAS. NEW DETAILED GTC-OSIRIS SPECTROPHOTOMETRY OF THREE GALAXIES , 2012, 1202.3419.

[34]  C. Lada,et al.  Sequential formation of subgroups in OB associations , 1977 .

[35]  Multiple superbubbles in the starburst nucleus of NGC 5253? Implications for mass loss from dwarf galaxies , 1999, astro-ph/9902188.

[36]  P. Crowther,et al.  Reduced Wolf-Rayet line luminosities at low metallicity , 2005, astro-ph/0512183.

[37]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[38]  T. Thuan,et al.  GREEN PEA GALAXIES AND COHORTS: LUMINOUS COMPACT EMISSION-LINE GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2011 .

[39]  M. Joy,et al.  Near-infrared line and continuum emission from the blue dwarf galaxy II Zw 40 , 1988 .

[40]  S.-C. Yoon,et al.  Single star progenitors of long gamma-ray bursts , 2006, astro-ph/0606637.

[41]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[42]  V. Kalogera,et al.  X-RAY BINARY EVOLUTION ACROSS COSMIC TIME , 2012, 1206.2395.

[43]  Bruce G. Elmegreen,et al.  Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit , 2005 .

[44]  A. Fontana,et al.  ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.

[45]  The Lyman alpha forest opacity and the metagalactic hydrogen ionization rate at z~ 2-4 , 2004, astro-ph/0411072.

[46]  M. Oey The Dynamics of Superbubbles in the Large Magellanic Cloud , 1996 .

[47]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[48]  Stefano Cristiani,et al.  On the relative Contribution of high-redshift Galaxies and Active Galactic Nuclei to Reionization , 2012, 1206.5810.

[49]  J. V'ilchez,et al.  ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE “GREEN PEA” GALAXIES , 2010, 1004.4910.

[50]  C. Lintott,et al.  Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.

[51]  Destruction of Molecular Hydrogen during Cosmological Reionization , 1996, astro-ph/9608130.

[52]  Leiden,et al.  New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.

[53]  C. Conselice,et al.  A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.

[54]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[55]  David Schiminovich,et al.  Hubble Space Telescope Morphologies of Local Lyman Break Galaxy Analogs. I. Evidence for Starbursts Triggered by Merging , 2007, 0709.3304.

[56]  Nicholas E. White,et al.  X-Ray Probes of Cosmic Star Formation History , 2001, astro-ph/0108245.

[57]  P. Papaderos,et al.  COMPLEX GAS KINEMATICS IN COMPACT, RAPIDLY ASSEMBLING STAR-FORMING GALAXIES , 2012, 1207.0509.

[58]  Lennox L. Cowie,et al.  Faintest galaxy morphologies from hst wfpc2 imaging of the hawaii survey fields , 1995 .

[59]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[60]  A. Pauldrach,et al.  Radiation-driven winds of hot luminous stars - XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres , 2001 .

[61]  R. J. Reynolds A measurement of the hydrogen recombination rate in the diffuse interstellar medium , 1984 .

[62]  E. Pellegrini,et al.  THE OPTICAL DEPTH OF H ii REGIONS IN THE MAGELLANIC CLOUDS , 2012, 1202.3334.

[63]  C. Leitherer,et al.  The Stellar Content of Henize 2-10 from Space Telescope Imaging Spectrograph Ultraviolet Spectroscopy , 2003 .

[64]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[65]  A Spectroscopic Study of a Large Sample Of Wolf-Rayet Galaxies , 1999, astro-ph/9910432.

[66]  A. Szalay,et al.  The Properties of Ultraviolet-luminous Galaxies at the Current Epoch , 2004, astro-ph/0412577.

[67]  P. Conti,et al.  Spectroscopic studies of Wolf-Rayet stars. V - Optical spectrophotometry of the emission lines in Small Magellanic Cloud stars , 1989 .

[68]  Jr.,et al.  Comparison of H II region luminosities with observed stellar ionizing sources in the Large Magellanic Cloud , 1997, astro-ph/9708106.

[69]  R. Chary,et al.  DISSECTION OF Hα EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES , 2012, 1205.0949.

[70]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[71]  V. Kalogera,et al.  THE EFFECT OF STARBURST METALLICITY ON BRIGHT X-RAY BINARY FORMATION PATHWAYS , 2010, 1005.1639.

[72]  D. John Hillier,et al.  The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .

[73]  S. McGaugh,et al.  H II region abundances - Model oxygen line ratios , 1991 .

[74]  Abundances in "Green Pea" Star-forming Galaxies , 2012 .

[75]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[76]  P. Kaaret,et al.  High-resolution imaging of the He II λ4686 emission line nebula associated with the ultraluminous X-ray source in Holmberg II , 2004, astro-ph/0407031.

[77]  Alak Ray,et al.  RADIO DETECTION OF GREEN PEAS: IMPLICATIONS FOR MAGNETIC FIELDS IN YOUNG GALAXIES , 2011, 1110.3312.

[78]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[79]  Kraków,et al.  Magnetic fields in merging spirals - the Antennae , 2004, astro-ph/0401157.

[80]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8 , 1995 .

[81]  L. Kewley,et al.  Eliminating error in the chemical abundance scale for extragalactic H ii regions , 2012, 1203.5021.

[82]  D. Calzetti,et al.  On the escape of ionizing radiation from starbursts , 2001 .

[83]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[84]  R. Walterbos,et al.  A RE-EXAMINATION OF OBSERVED AND PREDICTED STELLAR IONIZING FLUXES IN THE LARGE MAGELLANIC CLOUD , 2008 .

[85]  Max Pettini,et al.  The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.