Using fitness distributions to design more efficient evolutionary computations

There is a need for methods to generate more efficient and effective evolutionary algorithms. Traditional techniques that rely on schema processing, minimizing expected losses, and an emphasis on particular genetic operators have failed to provide robust optimization performance. An alternative technique for enhancing both the expected rate and probability of improvement in evolutionary algorithms is proposed. The method is investigated empirically and is shown to provide a potentially useful procedure for assessing the suitability of various variation operators in light of a particular representation, selection operator, and objective function.

[1]  J. Reed,et al.  Simulation of biological evolution and machine learning. I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. , 1967, Journal of theoretical biology.

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[7]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[8]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[9]  Bernard Manderick,et al.  The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.

[10]  Reinhard Männer,et al.  Parallel Problem Solving from Nature 2, PPSN-II, Brussels, Belgium, September 28-30, 1992 , 1992, Parallel Problem Solving from Nature.

[11]  Nicholas J. Radcliffe,et al.  Non-Linear Genetic Representations , 1992, PPSN.

[12]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[13]  D. Fogel ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1994 .

[14]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[15]  Kenneth A. De Jong,et al.  Using Markov Chains to Analyze GAFOs , 1994, FOGA.

[16]  John J. Grefenstette Predictive Models Using Fitness Distributions of Genetic Operators , 1994, FOGA.

[17]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[18]  L. C. Stayton,et al.  On the effectiveness of crossover in simulated evolutionary optimization. , 1994, Bio Systems.

[19]  D. Fogel Phenotypes, genotypes, and operators in evolutionary computation , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[20]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[21]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[22]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[23]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[24]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[25]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[26]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[27]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..