Support vector machines for temporal classification of block design fMRI data

This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage 18, 10-27; Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Siditis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D. 2002. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage 15, 747-771]. We compare SVM to canonical variates analysis (CVA) by examining the relative sensitivity of each method to ten combinations of preprocessing choices consisting of spatial smoothing, temporal detrending, and motion correction. Important to the discussion are the issues of classification performance, model interpretation, and validation in the context of fMRI. As the SVM has many unique properties, we examine the interpretation of support vector models with respect to neuroimaging data. We propose four methods for extracting activation maps from SVM models, and we examine one of these in detail. For both CVA and SVM, we have classified individual time samples of whole brain data, with TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with no averaging of scans or prior feature selection.

[1]  Lars Kai Hansen,et al.  Nonlinear versus Linear Models in Functional Neuroimaging: Learning Curves and Generalization Crossover , 1997, IPMI.

[2]  Christopher M. Bishop,et al.  Neural networks and machine learning , 1998 .

[3]  Stephen C. Strother,et al.  Penalized Discriminant Analysis of [15O]-water PET Brain Images with Prediction Error Selection of Smoothness and Regularization , 2001, IEEE Trans. Medical Imaging.

[4]  James T. Kwok,et al.  The evidence framework applied to support vector machines , 2000, IEEE Trans. Neural Networks Learn. Syst..

[5]  L. K. Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[6]  Stephen C. Strother,et al.  Predicting Motor Tasks in fMRI Data with Support Vector Machines , 2003 .

[7]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[8]  E Mjolsness,et al.  Machine learning for science: state of the art and future prospects. , 2001, Science.

[9]  T H Le,et al.  Methods for assessing accuracy and reliability in functional MRI , 1997, NMR in biomedicine.

[10]  Stephen M. LaConte,et al.  Real-Time Prediction of Brain States Using FMRI , 2004 .

[11]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[12]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[13]  Lars Kai Hansen,et al.  Massive Weight Sharing: A Cure For Extremely Ill-Posed Problems , 1994 .

[14]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[15]  L. K. Hansen,et al.  Plurality and Resemblance in fMRI Data Analysis , 1999, NeuroImage.

[16]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[17]  Gary F. Egan,et al.  Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics , 2003, NeuroImage.

[18]  John C. Gore,et al.  ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects , 1999, NeuroImage.

[19]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[20]  B. Ripley Statistical theories of model fitting , 1998 .

[21]  James T. Kwok Moderating the outputs of support vector machine classifiers , 1999, IEEE Trans. Neural Networks.

[22]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[23]  Essa Yacoub,et al.  The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics , 2003, NeuroImage.

[24]  Jerome H. Friedman,et al.  An Overview of Predictive Learning and Function Approximation , 1994 .

[25]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[26]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[27]  S. Strother,et al.  Penalized discriminant analysis of [/sup 15/O]-water PET brain images with prediction error selection of smoothness and regularization hyperparameters , 2001, IEEE Transactions on Medical Imaging.

[28]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[29]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[30]  J C Gore,et al.  An roc approach for evaluating functional brain mr imaging and postprocessing protocols , 1995, Magnetic resonance in medicine.

[31]  J Xiong,et al.  Assessment and optimization of functional MRI analyses , 1996, Human brain mapping.

[32]  Bernhard Schölkopf,et al.  The connection between regularization operators and support vector kernels , 1998, Neural Networks.

[33]  S. C. Strother,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves , 2002, NeuroImage.

[34]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[35]  Lars Kai Hansen,et al.  Consensus Inference in Neuroimaging , 2001, NeuroImage.

[36]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[37]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[38]  Harry Wechsler,et al.  From Statistics to Neural Networks: Theory and Pattern Recognition Applications , 1996 .

[40]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[41]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[42]  L. K. Hansen,et al.  Generalizable Patterns in Neuroimaging: How Many Principal Components? , 1999, NeuroImage.

[43]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.