HILBERT, DUALITY, AND THE GEOMETRICAL ROOTS OF MODEL THEORY

The article investigates one of the key contributions to modern structural mathematics, namely Hilbert’s Foundations of Geometry (1899) and its mathematical roots in nineteenth-century projective geometry. A central innovation of Hilbert’s book was to provide semantically minded independence proofs for various fragments of Euclidean geometry, thereby contributing to the development of the model-theoretic point of view in logical theory. Though it is generally acknowledged that the development of model theory is intimately bound up with innovations in 19th century geometry (in particular, the development of non-Euclidean geometries), so far, little has been said about how exactly model-theoretic concepts grew out of methodological investigations within projective geometry. This article is supposed to fill this lacuna and investigates this geometrical prehistory of modern model theory, eventually leading up to Hilbert’s Foundations .

[1]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[2]  Günther Eder Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory , 2016 .

[3]  Per Lindström,et al.  Aspects of Incompleteness , 2017, Lecture Notes in Logic.

[4]  G. M. Grundlagen der Geometrie , 1909, Nature.

[5]  J. Gray Worlds out of nothing: a course in the history of geometry in the 19th Century , 2007 .

[6]  M. Kline Mathematical Thought from Ancient to Modern Times , 1972 .

[7]  Richard Baldus Zur Axiomatik der Geometrie. I , 1928 .

[8]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[9]  Dirk Schlimm,et al.  PASCH’S PHILOSOPHY OF MATHEMATICS , 2010, The Review of Symbolic Logic.

[10]  Michael D. Resnik The Frege-Hilbert Controversy , 1974 .

[11]  Jan von Plato,et al.  David Hilbert's lectures on the foundations of arithmetic and logic 1917-1933. Edited by William Ewald and Wilfried Sieg. Springer, Berlin, Heidelberg and New York, 2013, xxv + 1062 pp , 2014, Bull. Symb. Log..

[12]  Paolo Mancosu,et al.  ON THE RELATIONSHIP BETWEEN PLANE AND SOLID GEOMETRY , 2010, The Review of Symbolic Logic.

[13]  Jeremy Gray,et al.  The Geometrical Work of Girard Desargues , 2011 .

[14]  D. Hilbert,et al.  Über homogene Functionen. , 1900 .

[15]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[16]  Eduardo N. Giovannini Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach , 2015, Synthese.

[17]  David Hilbert,et al.  David Hilbert's lectures on the foundations of geometry 1891-1902 , 2004 .

[18]  David Hilbert,et al.  Über die Entstehung von David Hilberts "Grundlagen der Geometrie" , 1986 .

[19]  W. Sieg The Ways of Hilbert's Axiomatics: Structural and Formal , 2014, Perspectives on Science.

[20]  Georg Schiemer,et al.  Logic in the 1930s: Type Theory and Model Theory , 2013, The Bulletin of Symbolic Logic.

[21]  M. Pasch Vorlesungen Uber Neuere Geometrie , 2015 .

[22]  Jaakko Hintikka,et al.  On the development of the model-theoretic viewpoint in logical theory , 1988, Synthese.

[23]  Albert Visser,et al.  An Overview of Interpretability Logic , 1997, Advances in Modal Logic.

[24]  Jaakko Hintikka,et al.  What is the axiomatic method? , 2011, Synthese.

[25]  J. Gray Ideas of space : Euclidean, non-Euclidean, and relativistic , 1982 .

[26]  Gottlob Frege,et al.  Philosophical and mathematical correspondence , 1980 .

[27]  S. Segal Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .

[28]  Ernest Nagel,et al.  The Formation of Modern Conceptions of Formal Logic in the Development of Geometry , 1939, Osiris.

[29]  J. V. Poncelet,et al.  Traité des propriétés projectives des figures , 1995 .

[30]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[31]  Michael Hallett Reflections on the Purity of Method in Hilbert's Grundlagen der Geometrie , 2008 .

[32]  G. M.,et al.  Projective Geometry , 1938, Nature.

[33]  Dirk Schlimm,et al.  David Hilbert's Lectures on the Foundations of Arithmetic and Logic 1917-1933 , 2013 .

[34]  R. Torretti Philosophy of geometry from Riemann to Poincaré , 1981 .

[35]  Kirsti Andersen The Geometry of an Art: The History of the Mathematical Theory of Perspective from Alberti to Monge , 2006 .