Assessment of Dual Tree Complex Wavelet Transform to improve SNR in collaboration with Neuro-Fuzzy System for Heart Sound Identification

Here we propose a novel de-noising method to improve the outcome of heart sound (HS)-based heart condition identification. We applied Dual Tree Complex Wavelet Transform (DTCWT) in collaboration with Adaptive Neuro Fuzzy Inference System (ANFIS) classifier. The method consisted of three steps. First, preprocess to eliminate 50 Hz noise. Second, application of DTCWT to de-noise and reconstruct time-domain HS signal. Third, evaluation of ANFIS on total 2735 HS recordings from an international dataset (PhysioNet Challenge 2016). The signal-to-noise ratio (SNR) with DTCWT was significantly improved (p < 0.001) as compared to original HS recordings. Quantitatively, there was a 11% increase in SNR after DTCWT, representing a significant improvement in de-noising HS. In addition, the ANFIS, using six time-domain features, resulted in 55–86% precision, 51–98% recall, 53–86% f-score, and 54–86% MAcc in comparison to other attempts on the same dataset. Therefore, DTCWT is a successful technique in de-noising information such as HS recordings. The adaptive property of ANFIS exhibited capability in classifying HS recordings.