Higher-order necessary conditions for infinite and semi-infinite optimization

In this paper, we present a unified theory of first-order and higher-order necessary optimality conditions for abstract vector optimization problems in normed linear spaces. We prove general multiplier rules, from which nearly all known first-order, second-order, and higher-order necessary conditions can be derived. In the last section, we prove higher-order necessary conditions for semi-infinite programming problems.

[1]  Bernhard Gollan Higher order necessary conditions for an abstract optimization problem , 1981 .

[2]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[3]  Marc Teboulle,et al.  Second order necessary optimality conditions for semi-infinite programming problems , 1979 .

[4]  R. Hettich,et al.  Charakterisierung Lokaler Pareto-Optima , 1976 .

[5]  E. Polak,et al.  On Second Order Necessary Conditions of Optimality , 1969 .

[6]  R. P. Hettich,et al.  Semi-infinite programming: Conditions of optimality and applications , 1978 .

[7]  H. Kornstaedt Necessary conditions of higher order for semi-infinite programming , 1979 .

[8]  K. H. Hoffmann,et al.  Higher-order necessary conditions in abstract mathematical programming , 1978 .

[9]  Anthony V. Fiacco Second Order Sufficient Conditions for Weak and Strict Constrained Minima , 1968 .

[10]  Werner Krabs,et al.  Optimization and approximation , 1979 .

[11]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[12]  A. Ben-Tal,et al.  A unified theory of first and second order conditions for extremum problems in topological vector spaces , 1982 .

[13]  Aharon Ben-Tal,et al.  Second Order Theory of Extremum Problems , 1980 .

[14]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[15]  J. Zowe A remark on a regularity assumption for the mathematical programming problem in Banach spaces , 1978 .

[16]  Klaus Glashoff Duality theory of semi-infinite programming , 1979 .

[17]  M. Hestenes Optimization Theory: The Finite Dimensional Case , 1975 .

[18]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[19]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .

[20]  K. R. Gehner,et al.  Necessary and Sufficient Optimality Conditions for the Fritz John Problem with Linear Equality Constraints , 1974 .

[21]  G. McCormick Second Order Conditions for Constrained Minima , 1967 .

[22]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[23]  B. T. Poljak,et al.  Lectures on mathematical theory of extremum problems , 1972 .

[24]  B. Gollan Perturbation theory for abstract optimization problems , 1981 .

[25]  L. Fraenkel Formulae for high derivatives of composite functions , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  W. Wetterling,et al.  Definitheitsbedingungen für relative Extrema bei Optimierungs- und Approximationsaufgaben , 1970 .

[27]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .