Estimating the global density of graphs by a sparseness index

Computation of sparse matrix is key in a wide range of applications of science and engineering. Matrix is tightly bound to the graph data structure and frequently used as an effective alternative: the complexity of fairly complicated operations on graphs can be measured as the computer time required to execute a number of arithmetic operations on nonzero quantities of a matrix. In this perspective, sparse matrices are computationally advantageous. We present a rigorous refinement of the completeness index, a mathematical function designed to quantify the sparsity of matrices. We prove its mathematical properties as well as its usefulness in the biological realm.

[1]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[2]  Corrado Priami,et al.  Snazer: the simulations and networks analyzer , 2010, BMC Systems Biology.

[3]  Ferenc Jordán,et al.  Estimating the divisibility of complex biological networks by sparseness indices , 2010, Briefings Bioinform..

[4]  Fan Chung Graham,et al.  The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..

[5]  D. West Introduction to Graph Theory , 1995 .

[6]  Rosita Guido,et al.  Taming the complexity of biological pathways through parallel computing , 2008, Briefings Bioinform..

[7]  Joachim Gudmundsson,et al.  Sparse geometric graphs with small dilation , 2008, Comput. Geom..

[8]  Luz M. DeAlba,et al.  Dense Graphs and Sparse Matrices , 1997, J. Chem. Inf. Comput. Sci..

[9]  Ümit V. Çatalyürek,et al.  Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication , 1999, IEEE Trans. Parallel Distributed Syst..

[10]  Tommaso Mazza,et al.  Stability analysis of biological network topologies during stochastic simulation , 2011, SimuTools.

[11]  Diego di Bernardo,et al.  Identifying Network of Drug Mode of Action by Gene Expression Profiling , 2009, J. Comput. Biol..

[12]  Ferenc Jordán,et al.  A network perspective on the topological importance of enzymes and their phylogenetic conservation , 2007, BMC Bioinformatics.

[13]  Frank Harary,et al.  Graph Theory , 2016 .

[14]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[15]  Bruno R. Preiss,et al.  Data Structures and Algorithms with Object-Oriented Design Patterns in Java , 1999 .

[16]  Fred S. Roberts,et al.  Applied Combinatorics , 1984 .

[17]  André Raspaud,et al.  Decomposition of sparse graphs into two forests, one having bounded maximum degree , 2010, Inf. Process. Lett..

[18]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[19]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[20]  Tommaso Mazza,et al.  Mirna Expression Profiles Identify Drivers in Colorectal and Pancreatic Cancers , 2012, PloS one.

[21]  David Eppstein,et al.  All maximal independent sets and dynamic dominance for sparse graphs , 2004, TALG.

[22]  Robert D. Leclerc Survival of the sparsest: robust gene networks are parsimonious , 2008, Molecular systems biology.

[23]  Albert-László Barabási,et al.  A Dynamic Network Approach for the Study of Human Phenotypes , 2009, PLoS Comput. Biol..

[24]  U. Schwiegelshohn,et al.  Parallel calculation of shortest paths in sparse graphs on a systolic array , 1988, Proceedings 1988 IEEE International Conference on Computer Design: VLSI.

[25]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[26]  John R. Gilbert,et al.  High-Performance Graph Algorithms from Parallel Sparse Matrices , 2006, PARA.

[27]  Ming Yi,et al.  bioDBnet: the biological database network , 2009, Bioinform..

[28]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[29]  James Hardy Wilkinson,et al.  Linear algebra , 1971, Handbook for automatic computation.

[30]  Rosita Guido,et al.  The Relevance of Topology in Parallel Simulation of Biological Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[31]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[32]  André Raspaud,et al.  Decomposition of sparse graphs, with application to game coloring number , 2010, Discret. Math..

[33]  W. Ashby Design for a Brain , 1954 .

[34]  S. Strogatz Exploring complex networks , 2001, Nature.