Mechanistic Modeling of Five-Axis Machining With a Flat End Mill Considering Bottom Edge Cutting Effect

[1]  Min Wan,et al.  Phase width analysis of cutting forces considering bottom edge cutting and cutter runout calibration in flat end milling of titanium alloy , 2011 .

[2]  Yusuf Altintas,et al.  Prediction of Milling Force Coefficients From Orthogonal Cutting Data , 1996 .

[3]  Rouven Hense,et al.  Determination of Force Parameters for Milling Simulations by Combining Optimization and Simulation Techniques , 2016 .

[4]  Seok Won Lee,et al.  Complete swept volume generation, Part I: Swept volume of a piecewise C1-continuous cutter at five-axis milling via Gauss map , 2011, Comput. Aided Des..

[5]  Yusuf Altintas,et al.  Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems , 2012 .

[6]  Min Wan,et al.  Cutting force modeling for flat end milling including bottom edge cutting effect , 2010 .

[7]  Sanjeev Bedi,et al.  Mechanistic modelling of the milling process using an adaptive depth buffer , 2003, Comput. Aided Des..

[8]  Min Wan,et al.  A new ternary-mechanism model for the prediction of cutting forces in flat end milling , 2012 .

[9]  Ye Ding,et al.  Smooth Tool Path Optimization for Flank Milling Based on the Gradient-Based Differential Evolution Method , 2016 .

[10]  Bin Li,et al.  Estimation of Cutter Deflection Based on Study of Cutting Force and Static Flexibility , 2016 .

[11]  Weihong Zhang,et al.  Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills , 2007 .

[12]  Yusuf Altintas,et al.  Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part II: Feed Rate Optimization of Five-Axis Flank Milling , 2008 .

[13]  Jeffrey G. Hemmett,et al.  Modeling of cutting geometry and forces for 5-axis sculptured surface machining , 2003, Comput. Aided Des..

[14]  Alan Sullivan,et al.  High accuracy NC milling simulation using composite adaptively sampled distance fields , 2012, Comput. Aided Des..

[15]  Li-Min Zhu,et al.  Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout , 2014 .

[16]  Han Ding,et al.  Formulating the swept envelope of rotary cutter undergoing general spatial motion for multi-axis NC machining , 2009 .

[17]  Yusuf Altintas,et al.  Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling , 2008 .

[18]  Han Ding,et al.  Global optimization of tool path for five-axis flank milling with a cylindrical cutter , 2009, Comput. Aided Des..

[19]  Weihong Zhang,et al.  New procedures for calibration of instantaneous cutting force coefficients and cutter runout parameters in peripheral milling , 2009 .

[20]  Xinzhi Wang,et al.  Mechanistic modeling of five-axis machining with a general end mill considering cutter runout , 2015 .

[21]  Yusuf Altintas,et al.  Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design , 2000 .

[22]  Qiang Guo,et al.  Numerical simulation and prediction of cutting forces in five-axis milling processes with cutter run-out , 2011 .

[23]  Yusuf Altintas,et al.  Mechanics and Dynamics of Multifunctional Tools , 2015 .

[24]  Paul J. Gray,et al.  Mechanistic modelling of 5-axis milling using an adaptive and local depth buffer , 2007, Comput. Aided Des..

[25]  Guo Dongming,et al.  An Approach to Modeling Cutting Forces in Five-Axis Ball-End Milling of Curved Geometries Based on Tool Motion Analysis , 2010 .

[26]  Behrooz Arezoo,et al.  Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System , 2016 .

[27]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[28]  Oscar Gonzalo,et al.  A method for the identification of the specific force coefficients for mechanistic milling simulation , 2010 .