Block alternating splitting implicit iteration methods for saddle‐point problems from time‐harmonic eddy current models

For the saddle-point problems arising from the finite element discretizations of the hybrid formulations of the time-harmonic eddy current problems, we establish a class of block alternating splitting implicit iteration methods and demonstrate its unconditional convergence. Experimental results are given to show the feasibility and effectiveness of this class of iterative methods when they are employed as preconditioners for Krylov subspace methods such as GMRES and BiCGSTAB.Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Zhong-Zhi Bai,et al.  Splitting iteration methods for non-Hermitian positive definite systems of linear equations , 2007 .

[2]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[3]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[4]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[5]  ANA ALONSO RODRÍGUEZ,et al.  Iterative Methods for the Saddle-Point Problem Arising from the HC/EI Formulation of the Eddy Current Problem , 2009, SIAM J. Sci. Comput..

[6]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[9]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[10]  Ana Alonso Rodríguez,et al.  Eddy Current Approximation of Maxwell Equations , 2010 .

[11]  Owe Axelsson Eigenvalue Estimates for Preconditioned Saddle Point Matrices , 2003, LSSC.

[12]  M. Benzi,et al.  A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations , 2011 .

[13]  P. R. Kotiuga Topological considerations in coupling magnetic scalar potentials to stream functions describing surface currents , 1989 .

[14]  Ana Alonso Rodríguez,et al.  Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications , 2010 .

[15]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[16]  Alaln Bossavit,et al.  On the condition ‘h normal to the wall’ in magnetic field problems , 1987 .

[17]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[18]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[19]  Ralf Hiptmair,et al.  A hybrid formulation of eddy current problems , 2005 .

[20]  Alberto Valli,et al.  A domain decomposition approach for heterogeneous time-harmonic Maxwell equations , 1997 .

[21]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[22]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[23]  Gene H. Golub,et al.  Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.

[24]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[25]  Gene H. Golub,et al.  An Iteration for Indefinite Systems and Its Application to the Navier-Stokes Equations , 1998, SIAM J. Sci. Comput..

[26]  Michael K. Ng,et al.  Constraint Preconditioners for Symmetric Indefinite Matrices , 2009, SIAM J. Matrix Anal. Appl..

[27]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[28]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[29]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[30]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[31]  Gene H. Golub,et al.  Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..