Electrical Control for Extension of Ramsey Spin Coherence Time of Ion-Implanted Nitrogen Vacancy Centers in diamond

The extension of the spin coherence times is a crucial issue for quantum information and quantum sensing. In solid state systems, suppressing noises with various techniques have been demonstrated. On the other hand, an electrical control for suppression is important toward individual controls of on-chip quantum information devices. Here we show the electrical control for extension of the spin coherence times of 40 nm-deep ion-implanted single nitrogen vacancy center spins in diamond by suppressing magnetic noises. We applied 120 V DC across two contacts spaced by 10 micrometers. The spin coherence times, estimated from a free-induction-decay and a Hahn-echo decay, were increased up to about 10 times (reaching 10 microseconds) and 1.4 times (reaching 150 microseconds), respectively. From the quantitative analysis, the dominant decoherence source depending on the applied static electric field was elucidated. The electrical control for extension can deliver a sensitivity enhancement to the DC sensing of temperature, pressure and electric (but not magnetic) fields, opening a new technique in solid-state quantum information devices.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  S. Yamasaki,et al.  Ultra-long coherence times amongst room-temperature solid-state spins , 2019, Nature Communications.

[3]  L. Hollenberg,et al.  Microscopic Imaging of the Stress Tensor in Diamond Using in Situ Quantum Sensors. , 2018, Nano letters.

[4]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[5]  R. Walsworth,et al.  Sensitivity optimization for NV-diamond magnetometry , 2019, 1903.08176.

[6]  A. Zimmermann,et al.  Robust and accurate electric field sensing with solid state spin ensembles. , 2019, Nano letters.

[7]  D. Englund,et al.  Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing , 2018, Physical Review B.

[8]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[9]  M. Markham,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[10]  S. Yamasaki,et al.  Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins. , 2017, ACS nano.

[11]  T. Schulte-Herbrüggen,et al.  Enhancing quantum sensing sensitivity by a quantum memory , 2016, Nature Communications.

[12]  B. Myers,et al.  Double-Quantum Spin-Relaxation Limits to Coherence of Near-Surface Nitrogen-Vacancy Centers. , 2016, Physical review letters.

[13]  P. Bertet,et al.  Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond , 2015, 1511.08175.

[14]  Jiangfeng Du,et al.  Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy , 2015, 1506.05882.

[15]  M. Sherwood,et al.  Decoherence of Near-Surface Nitrogen-Vacancy Centers Due to Electric Field Noise. , 2015, Physical review letters.

[16]  W. Munro,et al.  Improving the lifetime of the nitrogen-vacancy-center ensemble coupled with a superconducting flux qubit by applying magnetic fields , 2015, 1503.08950.

[17]  Hitoshi Umezawa,et al.  Diamond Metal–Semiconductor Field-Effect Transistor With Breakdown Voltage Over 1.5 kV , 2014, IEEE Electron Device Letters.

[18]  I. Gerhardt,et al.  Coherent control of single spins in silicon carbide at room temperature. , 2014, Nature materials.

[19]  F. Dolde,et al.  A Viewpoint on: Nanoscale Detection of a Single Fundamental Charge in Ambient Conditions Using the NV Center in Diamond , 2014 .

[20]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[21]  F. Dolde,et al.  Measuring the defect structure orientation of a single N V − ?> centre in diamond , 2014, 1402.4789.

[22]  D. Awschalom,et al.  Electrically Driven Spin Resonance in Silicon Carbide Color Centers , 2013, 1310.4844.

[23]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[24]  L. Hollenberg,et al.  Electronic properties and metrology applications of the diamond NV- center under pressure. , 2013, Physical review letters.

[25]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[26]  Viatcheslav V. Dobrovitski,et al.  Supporting Information for “ Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond ” , 2013 .

[27]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[28]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[29]  Ya Wang,et al.  Coherence-protected quantum gate by continuous dynamical decoupling in diamond. , 2012, Physical review letters.

[30]  R. Schirhagl,et al.  Spin properties of very shallow nitrogen vacancy defects in diamond , 2012, 1201.0871.

[31]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[32]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[33]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[34]  Alexander Zaitsev,et al.  Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks , 2011 .

[35]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[36]  Huan-Cheng Chang,et al.  In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. , 2010, Nano letters.

[37]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[38]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[39]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[40]  J. Wrachtrup,et al.  Coherence of single spins coupled to a nuclear spin bath of varying density , 2008, 0811.4731.

[41]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[42]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[43]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[44]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[45]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .

[46]  D. Twitchen,et al.  Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond , 2008 .

[47]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[48]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[49]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[50]  Norio Morishita,et al.  Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy withS=32andC3vsymmetry inn-type4H−SiC , 2002 .

[51]  E. Oort,et al.  Electric-field-induced modulation of spin echoes of N-V centers in diamond , 1990 .