Constrained Stochastic Extended Redundancy Analysis

We devise a new statistical methodology called constrained stochastic extended redundancy analysis (CSERA) to examine the comparative impact of various conceptual factors, or drivers, as well as the specific predictor variables that contribute to each driver on designated dependent variable(s). The technical details of the proposed methodology, the maximum likelihood estimation algorithm, and model selection heuristics are discussed. A sports marketing consumer psychology application is provided in a Major League Baseball (MLB) context where the effects of six conceptual drivers of game attendance and their defining predictor variables are estimated. Results compare favorably to those obtained using traditional extended redundancy analysis (ERA).

[1]  K. Jöreskog A General Method for Estimating a Linear Structural Equation System. , 1970 .

[2]  Theodore N. Greenstein,et al.  Factors Affecting Attendance of Major League Baseball: II. A Within-Season Analysis , 1985 .

[3]  Stephen Allan,et al.  Satellite television and football attendance: the not so super effect , 2004 .

[4]  A. L. V. D. Wollenberg Redundancy analysis an alternative for canonical correlation analysis , 1977 .

[5]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[6]  M. Silvapulle,et al.  Ridge estimation in logistic regression , 1988 .

[7]  J. Kettenring,et al.  Canonical Analysis of Several Sets of Variables , 2022 .

[8]  Calyampudi R. Rao The use and interpretation of principal component analysis in applied research , 1964 .

[9]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[10]  T. Greenstein,et al.  FACTORS AFFECTING ATTENDANCE OF MAJOR LEAGUE BASEBALL: TEAM PERFORMANCE , 1981 .

[11]  Daniel Rascher,et al.  Does Bat Day Make Cents? The Effect of Promotions on the Demand for Major League Baseball , 2000 .

[12]  Wayne S. DeSarbo,et al.  Proper Mix of Promotional Offerings Can Produce for Teams , 2012 .

[13]  Wayne S. DeSarbo Measuring Fan Avidity Can Help Marketers Narrow Their Focus , 2009 .

[14]  P. Green Iteratively reweighted least squares for maximum likelihood estimation , 1984 .

[15]  Kathleen H. Gruben,et al.  The Effect of Promotions on Attendance at Major League Baseball Games , 2011 .

[16]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[17]  Laura Tiehen,et al.  An Analysis of Major League Baseball Attendance, 1969 - 1987 , 1990 .

[18]  Jang-Han Lee,et al.  Generalized Functional Extended Redundancy Analysis , 2015, Psychometrika.

[19]  Matthew Leonard,et al.  Estimating Attendance at Major League Baseball Games for the 2007 Season , 2010 .

[20]  Jerry Suls,et al.  Take Me Out to the Ballgame: The Effects of Objective, Social, and Temporal Performance Information on Attendance at Major League Baseball Games , 1983 .

[21]  Jang-Han Lee,et al.  Functional Extended Redundancy Analysis , 2012, Psychometrika.

[22]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[23]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[24]  Jeff Madura,et al.  The short run demand for major league baseball , 1982 .

[25]  Y. Takane,et al.  Generalized structured component analysis , 2004 .

[26]  ModelsThomas W. Yee Reduced-rank Vector Generalized Linear Models , 2000 .

[27]  W. DeSarbo,et al.  A mixture likelihood approach for generalized linear models , 1995 .

[28]  Thomas A. Rhoads,et al.  Determinants of Minor League Baseball Attendance , 2010 .

[29]  Peter Dawson,et al.  SATELLITE TELEVISION AND THE DEMAND FOR FOOTBALL: A WHOLE NEW BALL GAME? , 1996 .

[30]  Robert J. Lemke,et al.  Explaining Game-to-Game Ticket Sales for Major League Baseball Games Over Time , 2012 .

[31]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[32]  G. Reinsel,et al.  Multivariate Reduced-Rank Regression: Theory and Applications , 1998 .

[33]  T. C. Krehbiel,et al.  Promotion timing in major league baseball and the stacking effects of factors that increase game attractiveness. , 2003 .

[34]  A. Izenman Reduced-rank regression for the multivariate linear model , 1975 .

[35]  Heungsun Hwang,et al.  An extended redundancy analysis and its applications to two practical examples , 2005, Comput. Stat. Data Anal..

[36]  Peter J. W. N. Bird,et al.  The demand for league football , 1982 .

[37]  Yukyoum Kim,et al.  Sport consumer behavior: a test for group differences on structural constraints. , 2008 .

[38]  Andrew M. Welki,et al.  U.S. professional football game-day attendance , 1999 .

[39]  H. Hansen,et al.  Factors affecting attendance at professional sport events. , 1989 .

[40]  R. Velu,et al.  Reduced rank models with two sets of regressors , 1991 .

[41]  Herman Wold,et al.  Soft modelling: The Basic Design and Some Extensions , 1982 .

[42]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[43]  Jan-Bernd Lohmöller,et al.  Latent Variable Path Modeling with Partial Least Squares , 1989 .

[44]  H. Wold Path Models with Latent Variables: The NIPALS Approach , 1975 .

[45]  T. W. Anderson Estimating Linear Restrictions on Regression Coefficients for Multivariate Normal Distributions , 1951 .

[46]  Fred L. Bookstein,et al.  Quantitative Sociology: International Perspectives on Mathematical and Statistical Modeling. , 1977 .

[47]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[48]  Wayne S. DeSarbo,et al.  A General Multiple Distributed Lag Framework for Estimating the Dynamic Effects of Promotions , 2014, Manag. Sci..

[49]  P. T. Davies,et al.  Procedures for Reduced‐Rank Regression , 1982 .

[50]  F. Richards A Method of Maximum‐Likelihood Estimation , 1961 .

[51]  A. Goldberger,et al.  Structural Equation Models in the Social Sciences. , 1974 .

[52]  Heungsun Hwang,et al.  Regularized Generalized Structured Component Analysis , 2009 .

[53]  John J. Siegfried,et al.  Professional Football and the Anti‐Blackout Law , 1977 .

[54]  Herman Wold,et al.  Systems under indirect observation : causality, structure, prediction , 1982 .