Protective properties of Zr-containing conversion coatings on zinc

[1]  N. P. Ivanova,et al.  Properties of zinc coatings electrochemically passivated in sodium molybdate , 2018, Surface and Interface Analysis.

[2]  P. Taheri,et al.  Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules , 2017 .

[3]  O. Knudsen,et al.  Corrosion Control Through Organic Coatings, Second Edition , 2017 .

[4]  J. Juhanoja,et al.  Effect of Hot Dip Galvanized Steel Surface Chemistry and Morphology on Titanium Hexafluoride Pretreatment , 2017 .

[5]  S. Schulz,et al.  Organosilane modified Zr-based conversion layer on Zn–Al alloy coated steel sheets , 2016 .

[6]  P. Laha,et al.  An in situ study of zirconium-based conversion treatment on zinc surfaces , 2015 .

[7]  B. Szczygieł,et al.  Corrosion resistance of chromium-free conversion coatings deposited on electrogalvanized steel from potassium hexafluorotitanate(IV) containing bath , 2013 .

[8]  N. Birbilis,et al.  Self-repairing oxides to protect zinc: Review, discussion and prospects , 2013 .

[9]  L. Fachikov,et al.  Surface treatment of zinc coatings by molybdate solutions , 2012 .

[10]  J. Landoulsi,et al.  Effects of organic and inorganic treatment agents on the formation of conversion layer on hot-dip galvanized steel: An X-ray photoelectron spectroscopy study , 2012 .

[11]  B. Szczygieł,et al.  Effect of deposition time on morphology, corrosion resistance and mechanical properties of Ti-containing conversion coatings on zinc , 2011 .

[12]  Deyu Li,et al.  Corrosion protection properties of vanadium films formed on zinc surfaces , 2011 .

[13]  Deyu Li,et al.  A vanadium-based conversion coating as chromate replacement for electrogalvanized steel substrates , 2011 .

[14]  Zhenqiang Wang,et al.  Synthesis and evaluation of corrosion resistance of molybdate-based conversion coatings on electroplated zinc , 2010 .

[15]  C. Richard,et al.  Study of a chromium-free treatment on Hot-Dip Galvanized steel: Electrochemical behaviour and performance in a saline medium , 2010 .

[16]  F. Pedraza,et al.  Corrosion behaviour of molybdate–phosphate–silicate coatings on galvanized steel , 2009 .

[17]  O. R. Mattos,et al.  The molybdate–zinc conversion process , 2009 .

[18]  D. D. Singh,et al.  Molybdenum–phosphorus compounds based passivator to control corrosion of hot dip galvanized coated rebars exposed in simulated concrete pore solution , 2008 .

[19]  U. Bexell,et al.  A comparative study of the corrosion protective properties of chromium and chromium free passivation methods , 2007 .

[20]  T. K. Rout,et al.  Effect of molybdate coating for white rusting resistance on galvanized steel , 2007 .

[21]  B. P. Wilson,et al.  Formation of ultra-thin amorphous conversion films on zinc alloy coatings. Part 2: Nucleation, growth and properties of inorganic-organic ultra-thin hybrid films , 2006 .

[22]  F. Mansfeld,et al.  Development of a Molybdate–Phosphate–Silane–Silicate (MPSS) coating process for electrogalvanized steel , 2006 .

[23]  O. R. Mattos,et al.  Molybdate conversion coatings on zinc surfaces , 2004 .

[24]  P. T. Tang,et al.  Molybdate Based Passivation of Zinc , 1997 .