Multi-Pursuer Multi-Evader Pursuit-Evasion Games with Jamming Confrontation

Existing pursuer-evader (PE) game algorithms do not provide good real-time solutions for situations with the following complexities: (1) multi-pursuer multi-evader, (2) multiple evaders with superior control resources such as higher speeds, and (3) jamming confrontation between pursuers and evaders. This paper introduces a real-time decentralized approach, in which decentralization strategy reduces computational complexity in multi-pursuer multievader situations, cooperative chasing strategy guarantees capture of some superior evaders, and min-max double-sided jamming confrontation provides optimal jamming-estimation strategies under adversarial noisy environments. Extensive simulations confirm the efficiency of this approach.

[1]  Rufus Isaacs,et al.  Differential Games , 1965 .

[2]  W. Wonham On a Matrix Riccati Equation of Stochastic Control , 1968 .

[3]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[4]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[5]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[6]  U. Shaked,et al.  Game theory approach to optimal linear state estimation and its relation to the minimum H/sub infinity /-norm estimation , 1992 .

[7]  Robert A. van de Geijn,et al.  Two Dimensional Basic Linear Algebra Communication Subprograms , 1993, PPSC.

[8]  Ronald H. Perrott,et al.  Language Constructs for Data Partitioning and Distribution , 1995, Sci. Program..

[9]  A. Pashkov,et al.  Construction of the value function in a pursuit-evasion game with three pursuers and one evader☆ , 1995 .

[10]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[11]  K. Zemskov,et al.  Construction of optimal position strategies in a differential pursuit-evasion game with one pursuer and two evaders☆ , 1997 .

[12]  Jordan B. Pollack,et al.  Statistical Reasoning Strategies in the Pursuit and Evasion Domain , 1999, ECAL.

[13]  Kyung-Yong Chwa,et al.  Searching a Polygonal Room with One Door by a 1-Searcher , 2000, Int. J. Comput. Geom. Appl..

[14]  Jirí Sgall Solution of David Gale's lion and man problem , 2001, Theor. Comput. Sci..

[15]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[17]  Ian M. Mitchell,et al.  Overapproximating Reachable Sets by Hamilton-Jacobi Projections , 2003, J. Sci. Comput..

[18]  Reid G. Simmons,et al.  Heuristic Search Value Iteration for POMDPs , 2004, UAI.

[19]  Jeff G. Schneider,et al.  Approximate solutions for partially observable stochastic games with common payoffs , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[20]  Dongxu Li,et al.  A Hierarchical Approach To Multi-Player Pursuit-Evasion Differential Games , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[21]  Sampath Kannan,et al.  Randomized pursuit-evasion in a polygonal environment , 2005, IEEE Transactions on Robotics.

[22]  Dan Simon,et al.  A game theory approach to constrained minimax state estimation , 2006, IEEE Transactions on Signal Processing.

[23]  Dongxu Li,et al.  Better cooperative control with limited look-ahead , 2006, 2006 American Control Conference.

[24]  Egon Balas,et al.  Integer Programming , 2021, Encyclopedia of Optimization.