An Algebraic Structure of Orthogonal Wavelet Space

Abstract In this paper we study the algebraic structure of the space of compactly supported orthonormal wavelets over real numbers. Based on the parameterization of wavelet space, one can define a parameter mapping from the wavelet space of rank 2 (or 2-band, scale factor of 2) and genus gto the (g−1) dimensional real torus (the products of unit circles). By the uniqueness and exactness of factorization, this mapping is well defined and one-to-one. Thus we can equip the rank 2 orthogonal wavelet space with an algebraic structure of the torus. Because of the degenerate phenomenon of the paraunitary matrix, the parameterization map is not onto. However, there exists an onto mapping from the torus to the closure of the wavelet space. And with such mapping, a more complete parameterization is obtained. By utilizing the factorization theory, we present a fast implementation of discrete wavelet transform (DWT). In general, the computational complexity of a rank morthogonal DWT is O(m2g). In this paper we start with a given scaling filter and construct additional (m−1) wavelet filters so that the DWT can be implemented in O(mg). With a fixed scaling filter, the approximation order, the orthogonality, and the smoothness remain unchanged; thus our fast DWT implementation is quite general.

[1]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[2]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[3]  H. L. Resnikoff,et al.  Wavelet analysis: the scalable structure of information , 1998 .

[4]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[5]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[6]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[7]  Peter Niels Heller,et al.  Rank M Wavelets with N Vanishing Moments , 1995, SIAM J. Matrix Anal. Appl..

[8]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[9]  David S. Stoffer,et al.  Wavelets: An Analysis Tool. , 1997 .

[10]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[11]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  Peter N. Heller,et al.  Theory of regular M-band wavelet bases , 1993, IEEE Trans. Signal Process..

[14]  Truong Q. Nguyen,et al.  Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  C. Chui,et al.  A general framework of compactly supported splines and wavelets , 1992 .

[16]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[17]  Y. Meyer Wavelets and Operators , 1993 .

[18]  P. P. Vaidyanathan,et al.  On orthonormal wavelets and paraunitary filter banks , 1993, IEEE Trans. Signal Process..

[19]  C. Galand,et al.  New quadrature mirror filter structures , 1984 .

[20]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[21]  Sinisa Pajevic,et al.  Wavelets: An analysis tool , 1997 .

[22]  Jun Tian,et al.  A lossy image codec based on index coding , 1996, Proceedings of Data Compression Conference - DCC '96.

[23]  J. Davenport Editor , 1960 .

[24]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[25]  A. Antoniadis,et al.  Wavelets and Statistics , 1995 .

[26]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[27]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[28]  D. Pollen,et al.  _{}(2,[,1/]) for a subfield of , 1990 .

[29]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[30]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[31]  Georges Bonnerot,et al.  Digital filtering by polyphase network:Application to sample-rate alteration and filter banks , 1976 .

[32]  Martin Vetterli,et al.  Perfect reconstruction FIR filter banks: some properties and factorizations , 1989, IEEE Trans. Acoust. Speech Signal Process..

[33]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[34]  R. Crochiere,et al.  Quadrature mirror filter design in the time domain , 1984 .

[35]  Peter N. Heller,et al.  Wavelet matrices and the representation of discrete functions , 1993 .

[36]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[37]  C. Burrus,et al.  Noise reduction using an undecimated discrete wavelet transform , 1996, IEEE Signal Processing Letters.

[38]  Jaroslav Kautsky,et al.  Pollen product factorization and construction of higher multiplicity wavelets , 1995 .

[39]  P. Topiwala Wavelet Image and Video Compression , 1998 .

[40]  Michael T. Orchard,et al.  Space-frequency quantization for wavelet image coding , 1997, IEEE Trans. Image Process..

[41]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[42]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .