Formation of a Nanostructured Hardened Surface Layer on the TiC-(Ni-Cr) Metal-Ceramic Alloy by Pulsed Electron-Beam Irradiation

[1]  K. V. Ivanov,et al.  Effectiveness of inert plasma gases in formation of modified structures in the surface layer of a cermet composite under pulsed electron irradiation , 2018, International Journal of Refractory Metals and Hard Materials.

[2]  K. V. Ivanov,et al.  Effect of Surface Layer Structural-Phase Modification on Tribological and Strength Properties of a TiC–(Ni–Cr) Metal Ceramic Alloy , 2017, Acta Metallurgica Sinica (English Letters).

[3]  Conglin Zhang,et al.  Surface microstructure and properties of Cu-C powder metallurgical alloy induced by high-current pulsed electron beam , 2017 .

[4]  Juris Meija,et al.  Atomic weights of the elements 2013 (IUPAC Technical Report) , 2016 .

[5]  T. Douillard,et al.  Elaboration and behavior under extreme irradiation conditions of nano- and micro-structured TiC , 2015 .

[6]  Yue Zhang,et al.  Improvement of surface microhardness and wear resistance of WC/Co hard alloy by high current pulsed electron beam irradiation , 2013 .

[7]  C. Dong,et al.  Surface microstructure and mechanical property of WC-6% Co hard alloy irradiated by high current pulsed electron beam , 2013 .

[8]  W. Brand,et al.  Atomic weights of the elements 2011 (IUPAC Technical Report) , 2013 .

[9]  H. Sohn,et al.  Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide - A review , 2009 .

[10]  Z. A. Munir,et al.  Sparking plasma sintering of nanometric tungsten carbide , 2009 .

[11]  V. Ovcharenko,et al.  Calculation of the temperature field in the surface layer of a cermet with electron-pulsed irradiation , 2008 .

[12]  N. V. Gushchina,et al.  Enhanced atomic short-range ordering of the alloy Fe–15 at. % Cr caused by ion irradiation at elevated temperature and thermal effects only , 2006 .

[13]  P. M. Shchanin,et al.  A facility for metal surface treatment with an electron beam , 2005 .

[14]  N. Koval,et al.  Installation for Treatment of Metal Surfaces by Low Energy Electron Beam , 2004 .

[15]  V. P. Grigoryev,et al.  Generation and propagation of high-current low-energy electron beams , 2003 .

[16]  T. Coplen Atomic Weights of the Elements , 2003 .

[17]  W. Duley Interaction of UV laser radiation with metals , 1996 .

[18]  G. J. Leigh Macmillan's chemical and physical data , 1994 .

[19]  T. Yoshida The Future of Thermal Plasma Processing , 1990 .

[20]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[21]  E. Pfender Thermal plasma processing in the nineties , 1988 .

[22]  J. Poate,et al.  Surface Modification and Alloying: by Laser, Ion, and Electron Beams , 1983 .

[23]  W. Duley Laser processing and analysis of materials , 1983 .

[24]  J. Poate,et al.  Surface Modification and Alloying , 1983, NATO Conference Series.

[25]  N. Bloembergen,et al.  Laser and Electron Beam Interactions with Solids , 1982 .

[26]  D. Follstaedt,et al.  Pulsed-electron-beam melting of Fe , 1981 .

[27]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[28]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[29]  J. Ready Effects of high-power laser radiation , 1971 .

[30]  G. W. C. Kaye,et al.  Tables of Physical and Chemical Constants , 2018 .

[31]  C. J. Smithells,et al.  Metals reference book , 1949 .

[32]  W. H. G.,et al.  Tables of Physical and Chemical Constants , 1942, Nature.