Tail estimation of the spectral density for a stationary Gaussian random field
暂无分享,去创建一个
[1] P. Robinson. Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .
[2] Chae Young Lim,et al. Properties of spatial cross-periodograms using fixed-domain asymptotics , 2008 .
[3] Wei-Liem Loh,et al. On fixed-domain asymptotics and covariance tapering in Gaussian random field models , 2011 .
[4] John T. Kent,et al. Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .
[5] Peter Hall,et al. Periodogram-Based Estimators of Fractal Properties , 1995 .
[6] R. Adler,et al. Random Fields and Geometry , 2007 .
[7] Yimin Xiao,et al. Fractal and smoothness properties of space-time Gaussian models , 2009, 0912.0285.
[8] A. Wood,et al. Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields , 2004, math/0406525.
[9] A. Yaglom. Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .
[10] R. Adler,et al. The Geometry of Random Fields , 1982 .
[11] Haotian Hang,et al. Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .
[12] A. Balakrishnan,et al. Spectral theory of random fields , 1983 .
[13] P. Hall,et al. Characterizing surface smoothness via estimation of effective fractal dimension , 1994 .
[14] D. Zimmerman,et al. Towards reconciling two asymptotic frameworks in spatial statistics , 2005 .
[15] Michael L. Stein,et al. Fixed-Domain Asymptotics for Spatial Periodograms , 1995 .
[16] V. Mandrekar,et al. Fixed-domain asymptotic properties of tapered maximum likelihood estimators , 2009, 0909.0359.
[17] Wei-Ying Wu,et al. Tail Estimation of the Spectral Density under Fixed-Domain Asymptotics , 2011 .
[18] Michael L. Stein,et al. The screening effect in Kriging , 2002 .
[19] Ethan Anderes,et al. On the consistent separation of scale and variance for Gaussian random fields , 2009, 0906.3829.
[20] Andrew T. A. Wood,et al. INCREMENT-BASED ESTIMATORS OF FRACTAL DIMENSION FOR TWO-DIMENSIONAL SURFACE DATA , 2000 .
[21] Wei-Liem Loh,et al. Fixed-domain asymptotics for a subclass of Matern-type Gaussian random fields , 2005, math/0602302.
[22] Douglas W. Nychka,et al. Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets , 2008 .
[23] M. Pelagatti. Stationary Processes , 2011 .
[24] Kellen Petersen August. Real Analysis , 2009 .
[25] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[26] Zhiliang Ying,et al. Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process , 1991 .
[27] Peter Hall,et al. Fractal analysis of surface roughness by using spatial data , 1999 .
[28] R. Adler. The Geometry of Random Fields , 2009 .
[29] Z. Ying. Maximum likelihood estimation of parameters under a spatial sampling scheme , 1993 .
[30] Steven Kay,et al. Gaussian Random Processes , 1978 .
[31] Michael L. Stein,et al. Uniform Asymptotic Optimality of Linear Predictions of a Random Field Using an Incorrect Second-Order Structure , 1990 .
[32] Michael L. Stein,et al. Bounds on the Efficiency of Linear Predictions Using an Incorrect Covariance Function , 1990 .
[33] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .