Tail estimation of the spectral density for a stationary Gaussian random field

Consider a stationary Gaussian random field on R^d with spectral density f(@l) that satisfies f(@l)~c|@l|^-^@q as |@l|->~. The parameters c and @q control the tail behavior of the spectral density. c is related to a microergodic parameter and @q is related to a fractal index. For data observed on a grid, we propose estimators of c and @q by minimizing an objective function, which can be viewed as a weighted local Whittle likelihood, study their properties under the fixed-domain asymptotics and provide simulation results.

[1]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[2]  Chae Young Lim,et al.  Properties of spatial cross-periodograms using fixed-domain asymptotics , 2008 .

[3]  Wei-Liem Loh,et al.  On fixed-domain asymptotics and covariance tapering in Gaussian random field models , 2011 .

[4]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[5]  Peter Hall,et al.  Periodogram-Based Estimators of Fractal Properties , 1995 .

[6]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[7]  Yimin Xiao,et al.  Fractal and smoothness properties of space-time Gaussian models , 2009, 0912.0285.

[8]  A. Wood,et al.  Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields , 2004, math/0406525.

[9]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[10]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[11]  Haotian Hang,et al.  Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[12]  A. Balakrishnan,et al.  Spectral theory of random fields , 1983 .

[13]  P. Hall,et al.  Characterizing surface smoothness via estimation of effective fractal dimension , 1994 .

[14]  D. Zimmerman,et al.  Towards reconciling two asymptotic frameworks in spatial statistics , 2005 .

[15]  Michael L. Stein,et al.  Fixed-Domain Asymptotics for Spatial Periodograms , 1995 .

[16]  V. Mandrekar,et al.  Fixed-domain asymptotic properties of tapered maximum likelihood estimators , 2009, 0909.0359.

[17]  Wei-Ying Wu,et al.  Tail Estimation of the Spectral Density under Fixed-Domain Asymptotics , 2011 .

[18]  Michael L. Stein,et al.  The screening effect in Kriging , 2002 .

[19]  Ethan Anderes,et al.  On the consistent separation of scale and variance for Gaussian random fields , 2009, 0906.3829.

[20]  Andrew T. A. Wood,et al.  INCREMENT-BASED ESTIMATORS OF FRACTAL DIMENSION FOR TWO-DIMENSIONAL SURFACE DATA , 2000 .

[21]  Wei-Liem Loh,et al.  Fixed-domain asymptotics for a subclass of Matern-type Gaussian random fields , 2005, math/0602302.

[22]  Douglas W. Nychka,et al.  Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets , 2008 .

[23]  M. Pelagatti Stationary Processes , 2011 .

[24]  Kellen Petersen August Real Analysis , 2009 .

[25]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[26]  Zhiliang Ying,et al.  Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process , 1991 .

[27]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[28]  R. Adler The Geometry of Random Fields , 2009 .

[29]  Z. Ying Maximum likelihood estimation of parameters under a spatial sampling scheme , 1993 .

[30]  Steven Kay,et al.  Gaussian Random Processes , 1978 .

[31]  Michael L. Stein,et al.  Uniform Asymptotic Optimality of Linear Predictions of a Random Field Using an Incorrect Second-Order Structure , 1990 .

[32]  Michael L. Stein,et al.  Bounds on the Efficiency of Linear Predictions Using an Incorrect Covariance Function , 1990 .

[33]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .