Bulk heterojunction solar cells with internal quantum efficiency approaching 100

A polymer solar-cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported. The device exhibits a power-conversion efficiency of 6% under standard air-mass 1.5 global illumination tests.

[1]  C. Foote,et al.  Photophysical properties of C70 , 1991 .

[2]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[3]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[4]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[5]  Daniel Moses,et al.  Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes , 1996 .

[6]  Duncan W. McBranch,et al.  Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends , 1997 .

[7]  S. Winter,et al.  Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values , 2000 .

[8]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[9]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[10]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[11]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[12]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[13]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[14]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[15]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[16]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[17]  Gang Li,et al.  Accurate Measurement and Characterization of Organic Solar Cells , 2006 .

[18]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[19]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[20]  Mats Andersson,et al.  Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends , 2006 .

[21]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[22]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[23]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[24]  Alan J. Heeger,et al.  Spatial Fourier‐Transform Analysis of the Morphology of Bulk Heterojunction Materials Used in “Plastic” Solar Cells , 2007 .

[25]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[26]  C. Brabec,et al.  Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells , 2007 .

[27]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[28]  Osamu Yoshikawa,et al.  High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer , 2007 .

[29]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[30]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[31]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[32]  Lenneke H. Slooff,et al.  Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling , 2007 .

[33]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[34]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[35]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[36]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[37]  Junbiao Peng,et al.  High-performance polymer heterojunction solar cells of a polysilafluorene derivative , 2008 .

[38]  Gang Li,et al.  Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells , 2008 .

[39]  Shinuk Cho,et al.  Multilayer bipolar field-effect transistors , 2008 .

[40]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[41]  Jae Kwan Lee,et al.  "Columnlike" structure of the cross-sectional morphology of bulk heterojunction materials. , 2009, Nano letters.