Using measurement-induced disturbance to characterize correlations as classical or quantum

In contrast to the seminal entanglement-separability paradigm widely used in quantum information theory, we introduce a quantum-classical dichotomy in order to classify and quantify statistical correlations in bipartite states. This is based on the idea that while in the classical description of nature measurements can be carried out without disturbance, in the quantum description, generic measurements often disturb the system and the disturbance can be exploited to quantify the quantumness of correlations therein. It turns out that certain separable states still possess correlations of a quantum nature and indicates that quantum correlations are more general than entanglement. The results are illustrated in the Werner states and the isotropic states, and are applied to quantify the quantum advantage of the model of quantum computation proposed by Knill and Laflamme [Phys. Rev. Lett. 81, 5672 (1998)].

[1]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[2]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[4]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[5]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[6]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[7]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  K. Jacobs,et al.  Statistical Inference, Distinguishability of Quantum States, And Quantum Entanglement , 1997, quant-ph/9703025.

[9]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[10]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[11]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[12]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[13]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[14]  C. Adami,et al.  Reduction criterion for separability , 1999 .

[15]  Meyer Sophisticated quantum search without entanglement , 2000, Physical review letters.

[16]  Terhal,et al.  Entanglement of formation for isotropic states , 2000, Physical review letters.

[17]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[18]  V. Vedral,et al.  Information, relative entropy of entanglement, and irreversibility. , 2000 .

[19]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[20]  Entanglement measures , 2001 .

[21]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[22]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[23]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[24]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[25]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[26]  S. Luo Wigner-Yanase skew information and uncertainty relations. , 2003, Physical review letters.

[27]  V. Vedral Classical correlations and entanglement in quantum measurements. , 2002, Physical review letters.

[28]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[29]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[30]  S. Luo,et al.  Informational distance on quantum-state space , 2004 .

[31]  Eli Biham,et al.  Quantum computing without entanglement , 2003, Theor. Comput. Sci..

[32]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[33]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[34]  Nai-Le Liu,et al.  Entanglement detection by local orthogonal observables. , 2004, Physical review letters.

[35]  S. Luo Quantum uncertainty of mixed states based on skew information (4 pages) , 2006 .

[36]  Norbert Lütkenhaus,et al.  Nonlinear entanglement witnesses. , 2006, Physical review letters.

[37]  Nan Li,et al.  Total versus quantum correlations in quantum states , 2007 .

[38]  Animesh Datta,et al.  Role of entanglement and correlations in mixed-state quantum computation , 2007 .

[39]  Zhengmin Zhang,et al.  Probabilistic interpretation of the reduction criterion for entanglement , 2007 .