Dopant Modulated Li Insertion in Si for Battery Anodes: Theory and Experiment
暂无分享,去创建一个
Brandon R. Long | Maria K. Y. Chan | Jeffrey Greeley | Andrew A. Gewirth | J. Greeley | M. Chan | A. Gewirth
[1] Joong-Kee Lee,et al. Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries , 2009 .
[2] P. Bruce,et al. Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.
[3] J. Tarascon,et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .
[4] G. Nazri,et al. Vibrational studies of lithium perchlorate in propylene carbonate solutions , 1993 .
[5] Ming L. Yu,et al. The adsorption of PH3 on Si(100) and its effect on the coadsorption of SiH4 , 1984 .
[6] M. Rosa Palacín,et al. New British Standards , 1979 .
[7] H. Moon,et al. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries , 2004 .
[8] D. H. Bradhurst,et al. Innovative nanosize lithium storage alloys with silica as active centre , 2000 .
[9] M Rosa Palacín,et al. Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.
[10] J. Tarascon,et al. Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .
[11] A. E. O'Neill,et al. In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode , 2009 .
[12] Jingying Xie,et al. Si/C composites for high capacity lithium storage materials , 2003 .
[13] Sang-Eun Bae,et al. Nitrate adsorption and reduction on Cu(100) in acidic solution. , 2007, Journal of the American Chemical Society.
[14] Ranganath Teki,et al. Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.
[15] Mark N. Obrovac,et al. Structural changes in silicon anodes during lithium insertion/extraction , 2004 .
[16] Margret Wohlfahrt-Mehrens,et al. A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .
[17] T. Takamura,et al. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .
[18] Jung-Ho Ahn,et al. Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .
[19] Gerbrand Ceder,et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .
[20] M. J. Eddowes,et al. Anodic dissolution of p- and n-type silicon: Kinetic study of the chemical mechanism , 1990 .
[21] J. Plummer,et al. Observation of phosphorus pile‐up at the SiO2‐Si interface , 1978 .
[22] A. S. Grove,et al. Redistribution of Acceptor and Donor Impurities during Thermal Oxidation of Silicon , 1964 .
[23] John T. Vaughey,et al. Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .
[24] Wonyoung Chang,et al. Electrochemical characteristics of semi conductive silicon anode for lithium polymer batteries , 2010 .
[25] H. Lee,et al. Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries , 2002 .
[26] Yong Liang,et al. A High Capacity Nano Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .
[27] Michael M. Thackeray,et al. Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .
[28] Mark N. Obrovac,et al. Reversible Cycling of Crystalline Silicon Powder , 2007 .
[29] K. Nakagawa,et al. Surface segregation behavior of B, Ga, and Sb during Si MBE: Calculations using a first-principles method , 1998 .
[30] C. C. Ahn,et al. Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .
[31] Enge Wang,et al. Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.
[32] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[33] T. Brousse,et al. Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .
[34] Brandon R. Long,et al. Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .
[35] K. Burke,et al. Rationale for mixing exact exchange with density functional approximations , 1996 .
[36] A. Zunger,et al. n -type doping of CuIn Se 2 and CuGa Se 2 , 2005 .
[37] Young-Il Jang,et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .
[38] Joong-Kee Lee,et al. Effect of Phosphorus Doping into the Silicon as an Anode Material for Lithium Secondary Batteries , 2007 .
[39] M. Tanimoto,et al. Measurements of the three‐dimensional impurity profile in Si using chemical etching and scanning tunneling microscopy , 1991 .
[40] Albert K. Henning,et al. Two‐dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy , 1995 .
[41] A. Gewirth,et al. Electrochemically Driven Reorientation of Three Ionic States of p-Aminobenzoic Acid on Ag(111) , 2009 .
[42] S. Rajendran,et al. Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries , 2005 .
[43] Jae-Hun Kim,et al. Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.
[44] Qi Wang,et al. Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition , 2003 .
[45] Chunsheng Wang,et al. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .
[46] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.