Dopant Modulated Li Insertion in Si for Battery Anodes: Theory and Experiment

We examine the effects of p-type and n-type dopants on the lithiation of crystalline Si as related to Li-ion batteries. In situ Raman spectroscopy and electrochemistry are used to investigate two crystallographic faces, (100) and (111), for boron (B) and phosphorus (P) dopants, to monitor the insertion of Li and the associated transition to amorphous Si. Density functional theory calculations are used to investigate the lithiation of doped and undoped crystalline Si bulk and surface models. The experimental and computational results suggest that lithiation voltages are different for P-doped and B-doped Si. The B-doped surfaces are found to insert Li at higher voltages than P- and undoped surfaces but result in less Li insertion. These results provide an understanding of the effects on dopants on the lithiation of silicon which may ultimately aid in the development of alternate anode materials for Li-ion batteries.

[1]  Joong-Kee Lee,et al.  Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries , 2009 .

[2]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[3]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[4]  G. Nazri,et al.  Vibrational studies of lithium perchlorate in propylene carbonate solutions , 1993 .

[5]  Ming L. Yu,et al.  The adsorption of PH3 on Si(100) and its effect on the coadsorption of SiH4 , 1984 .

[6]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[7]  H. Moon,et al.  Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries , 2004 .

[8]  D. H. Bradhurst,et al.  Innovative nanosize lithium storage alloys with silica as active centre , 2000 .

[9]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[10]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[11]  A. E. O'Neill,et al.  In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode , 2009 .

[12]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .

[13]  Sang-Eun Bae,et al.  Nitrate adsorption and reduction on Cu(100) in acidic solution. , 2007, Journal of the American Chemical Society.

[14]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[15]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[16]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[17]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[18]  Jung-Ho Ahn,et al.  Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .

[19]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[20]  M. J. Eddowes,et al.  Anodic dissolution of p- and n-type silicon: Kinetic study of the chemical mechanism , 1990 .

[21]  J. Plummer,et al.  Observation of phosphorus pile‐up at the SiO2‐Si interface , 1978 .

[22]  A. S. Grove,et al.  Redistribution of Acceptor and Donor Impurities during Thermal Oxidation of Silicon , 1964 .

[23]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[24]  Wonyoung Chang,et al.  Electrochemical characteristics of semi conductive silicon anode for lithium polymer batteries , 2010 .

[25]  H. Lee,et al.  Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries , 2002 .

[26]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[27]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[28]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[29]  K. Nakagawa,et al.  Surface segregation behavior of B, Ga, and Sb during Si MBE: Calculations using a first-principles method , 1998 .

[30]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[31]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[32]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[33]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[34]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[35]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[36]  A. Zunger,et al.  n -type doping of CuIn Se 2 and CuGa Se 2 , 2005 .

[37]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[38]  Joong-Kee Lee,et al.  Effect of Phosphorus Doping into the Silicon as an Anode Material for Lithium Secondary Batteries , 2007 .

[39]  M. Tanimoto,et al.  Measurements of the three‐dimensional impurity profile in Si using chemical etching and scanning tunneling microscopy , 1991 .

[40]  Albert K. Henning,et al.  Two‐dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy , 1995 .

[41]  A. Gewirth,et al.  Electrochemically Driven Reorientation of Three Ionic States of p-Aminobenzoic Acid on Ag(111) , 2009 .

[42]  S. Rajendran,et al.  Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries , 2005 .

[43]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[44]  Qi Wang,et al.  Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition , 2003 .

[45]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.