Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean.

[1]  P. Carrillo,et al.  Increased nutrients from aeolian‐dust and riverine origin decrease the CO2‐sink capacity of coastal South Atlantic waters under UVR exposure , 2018 .

[2]  L. Hansson,et al.  Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning , 2018 .

[3]  C. C. White,et al.  Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017 , 2018, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[4]  E. Helbling,et al.  Abiotic control of phytoplankton blooms in temperate coastal marine ecosystems: A case study in the South Atlantic Ocean. , 2018, The Science of the total environment.

[5]  R. Gonçalves,et al.  Solar UVR sensitivity of phyto‐ and bacterioplankton communities from Patagonian coastal waters under increased nutrients and acidification: Towards a Broader Perspective on Ocean Acidification Research Part 2 A special issue of the ICES Journal of Marine Science , 2017 .

[6]  L. Riemann,et al.  The Effect of Increased Loads of Dissolved Organic Matter on Estuarine Microbial Community Composition and Function , 2017, Front. Microbiol..

[7]  T. Rynearson,et al.  pCO2 effects on species composition and growth of an estuarine phytoplankton community. , 2016, Estuarine, coastal and shelf science.

[8]  A. Almeida,et al.  Insights on the Optical Properties of Estuarine DOM – Hydrological and Biological Influences , 2016, PloS one.

[9]  P. Abreu,et al.  Human activities and climate variability drive fast‐paced change across the world's estuarine–coastal ecosystems , 2016, Global change biology.

[10]  E. Helbling,et al.  Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: Role of acidification, nutrients and solar UVR , 2015 .

[11]  A. Banaszak,et al.  Global change feed-back inhibits cyanobacterial photosynthesis , 2015, Scientific Reports.

[12]  D. Lundin,et al.  Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment , 2015, AMBIO.

[13]  R. Sommaruga,et al.  The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea , 2015, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[14]  K. Rose,et al.  ff ects of UV radiation on aquatic ecosystems and interactions with other environmental factors , 2014 .

[15]  J. M. Schuurmans,et al.  Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas danica after feeding. , 2014, The New phytologist.

[16]  D. Häder,et al.  Productivity of aquatic primary producers under global climate change , 2014, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[17]  M. Ardelan,et al.  Size‐spectrum based differential response of phytoplankton to nutrient and iron‐organic matter combinations in microcosm experiments in a Chilean Patagonian Fjord , 2014 .

[18]  D. Thornton Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean , 2014 .

[19]  Watson W. Gregg,et al.  Interannual Variation in Phytoplankton Primary Production at A Global Scale , 2013, Remote. Sens..

[20]  James E. Cloern,et al.  Phytoplankton primary production in the world's estuarine-coastal ecosystems , 2013 .

[21]  H. Saito,et al.  Photobleaching as a factor controlling spectral characteristics of chromophoric dissolved organic matter in open ocean , 2013 .

[22]  I. Laurion,et al.  Dissolved organic matter photolysis in Canadian arctic thaw ponds , 2013 .

[23]  K. Rose,et al.  Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing , 2013 .

[24]  M. Rautio,et al.  Responses of microbial food web to increased allochthonous DOM in an oligotrophic subarctic lake , 2013 .

[25]  Thomas F. Stocker,et al.  Climate change 2013 , 2013 .

[26]  Pedro de Carli,et al.  La pesquería del langostino argentino Pleoticus muelleri (Crustacea: Penaeidae) en Patagonia, ¿un único stock? , 2012 .

[27]  K. Gao,et al.  Future CO2-Induced Ocean Acidification Mediates the Physiological Performance of a Green Tide Alga1 , 2012, Plant Physiology.

[28]  E. Canuel,et al.  Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface , 2012 .

[29]  V. Conzonno,et al.  Limnological aspects of humic substances in Chubut River (Patagonia‐Argentina) , 2011 .

[30]  P. Boelen,et al.  Increase in Rubisco activity and gene expression due to elevated temperature partially counteracts ultraviolet radiation–induced photoinhibition in the marine diatom Thalassiosira weissflogii , 2011 .

[31]  D. Karl,et al.  Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions , 2011 .

[32]  K. Rose,et al.  When UV Meets Fresh Water , 2010, Science.

[33]  W. H. van de Poll,et al.  Xanthophyll cycle activity and photosynthesis of Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) during fluctuating solar radiation , 2010 .

[34]  Daniel E. Pérez,et al.  Phytoplankton distribution and photosynthesis dynamics in the Chubut River estuary (Patagonia, Argentina) throughout tidal cycles , 2010 .

[35]  Matthew S. Johnson,et al.  Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean , 2010 .

[36]  J. LaRoche,et al.  Bioassays, batch culture and chemostat experimentation, Approaches and tools to manipulate the carbonate chemistry , 2010 .

[37]  W. H. van de Poll,et al.  Antioxidative Responses of Two Marine Microalgae During Acclimation to Static and Fluctuating Natural UV Radiation , 2009, Photochemistry and photobiology.

[38]  R. E. Turner,et al.  Global change and eutrophication of coastal waters , 2009 .

[39]  M. Scapini,et al.  Comparison of marine and river water humic substances in a Patagonian environment (Argentina) , 2009, Aquatic Sciences.

[40]  W. McDowell,et al.  Spatial and temporal variations in DOM composition in ecosystems: The importance of long‐term monitoring of optical properties , 2008 .

[41]  Benjamin S Halpern,et al.  Interactive and cumulative effects of multiple human stressors in marine systems. , 2008, Ecology letters.

[42]  E. Helbling,et al.  UVR-induced photosynthetic inhibition dominates over DNA damage in marine dinoflagellates exposed to fluctuating solar radiation regimes , 2008 .

[43]  E. Helbling,et al.  Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton. , 2007, Journal of photochemistry and photobiology. B, Biology.

[44]  P. Boersma,et al.  Anchovy Fishery Threat to Patagonian Ecosystem , 2007, Science.

[45]  P. Tréguer,et al.  Growth physiology and fate of diatoms in the ocean: a review , 2005 .

[46]  U. Riebesell Effects of CO2 Enrichment on Marine Phytoplankton , 2004 .

[47]  C. Trick,et al.  Controlling iron availability to phytoplankton in iron-replete coastal waters , 2004 .

[48]  S. Pflugmacher,et al.  Impact of natural organic matter (NOM) on freshwater amphipods. , 2004, The Science of the total environment.

[49]  C. Steinberg,et al.  Direct and interacting toxicological effects on the waterflea (Daphnia magna) by natural organic matter, synthetic humic substances and cypermethrin. , 2004, The Science of the total environment.

[50]  Roger I. Jones,et al.  The influence of humic substances on lacustrine planktonic food chains , 2004, Hydrobiologia.

[51]  Hugh L. MacIntyre,et al.  Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton , 2003 .

[52]  K. Gao,et al.  Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing , 2003 .

[53]  Horacio Zagarese,et al.  Reactive oxygen species in aquatic ecosystems , 2003 .

[54]  D. Morris,et al.  Photochemistry of chromophoric dissolved organic matter in natural waters , 2003 .

[55]  E. W. Helbling,et al.  Experimental assessment of UV effects on temperate marine phytoplankton when exposed to variable radiation regimes , 2002 .

[56]  B. Biddanda,et al.  Small Players, Large Role: Microbial Influence on Biogeochemical Processes in Pelagic Aquatic Ecosystems , 2002, Ecosystems.

[57]  J. Klug Positive and negative effects of allochthonous dissolved organic matter and inorganic nutrients on phytoplankton growth , 2002 .

[58]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[59]  A. J. Underwood,et al.  Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance , 1997 .

[60]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[61]  Craig E. Williamson,et al.  The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon , 1995 .

[62]  Teruyuki Nakajima,et al.  Modelling radiation quantities and photolysis frequencies in the troposphere , 1994 .

[63]  B. Genty,et al.  Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-respiratory conditions. , 1990 .

[64]  Joseph A. Berry,et al.  Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence , 1987 .

[65]  L. Björn,et al.  Computer calculation of solar ultraviolet-radiation at ground-level , 1985 .

[66]  P. Falkowski Light-shade adaptation and assimilation numbers , 1981 .

[67]  O. Holm‐Hansen,et al.  Chlorophyll a Determination: Improvements in Methodology , 1978 .

[68]  J. Strickland A practical hand-book of seawater analysis , 1972 .

[69]  B. Vogel,et al.  Modelling Of Radiation Quantities And PhotolysisFrequencies In The Troposphere , 1970 .

[70]  R. R. Strathmann,et al.  ESTIMATING THE ORGANIC CARBON CONTENT OF PHYTOPLANKTON FROM CELL VOLUME OR PLASMA VOLUME1 , 1967 .

[71]  C. Lorenzen,et al.  Fluorometric Determination of Chlorophyll , 1965 .