New Directions in Descriptive Set Theory
暂无分享,去创建一个
[1] Alain Louveau,et al. A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .
[2] Greg Hjorth,et al. Classification and Orbit Equivalence Relations , 1999 .
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] Benjamin Weiss,et al. An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.
[5] Calvin C. Moore,et al. Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .
[6] Edward G. Effros,et al. Transformation Groups and C ∗ -algebras , 1965 .
[7] J. Silver,et al. Counting the number of equivalence classes of Borel and coanalytic equivalence relations , 1980 .
[8] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[9] A. Kechris,et al. The Descriptive Set Theory of Polish Group Actions: BETTER TOPOLOGIES , 1996 .
[10] Simon Thomas,et al. On the Complexity of the Isomorphism Relation for Finitely Generated Groups , 1998 .
[11] Slawomir Solecki,et al. Analytic Ideals , 1996, Bulletin of Symbolic Logic.
[12] G. Hjorth. Vaught’s conjecture on analytic sets , 1997, math/9712274.
[13] Greg Hjorth,et al. Borel Equivalence Relations Induced by Actions of the Symmetric Group , 1998, Ann. Pure Appl. Log..
[14] Greg Hjorth. Around nonclassifiability for countable torsion free abelian groups , 1999 .
[15] Alain Louveau,et al. The classification of hypersmooth Borel equivalence relations , 1997 .
[16] R. Ellis. Locally compact transformation groups , 1957 .
[17] Simon Thomas,et al. On the complexity of the isomorphism relation for fields of finite transcendence degree , 2001 .
[18] Yiannis N. Moschovakis,et al. Cabal Seminar 76–77 , 1978 .
[19] T. Broadbent. Abelian Groups , 1970, Nature.
[20] Alexander S. Kechris. Amenable Equivalence Relations and Turing Degrees , 1991, J. Symb. Log..
[21] Benjamin Weiss,et al. Ergodic theory of amenable group actions. I: The Rohlin lemma , 1980 .
[22] Y. Moschovakis. Descriptive Set Theory , 1980 .
[23] Greg Hjorth,et al. Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..
[24] R. Dougherty,et al. The structure of hy-per nite Borel equivalence relations , 1994 .
[25] John R. Steel,et al. Cabal Seminar 81–85 , 1988 .
[26] A. Kechris. Classical descriptive set theory , 1987 .
[27] Alain Louveau,et al. A note on Borel equivalence relations , 1994 .
[28] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[29] Slawomir Solecki. Review: Greg Hjorth, Alexander S. Kechris, Analytic Equivalence Relations and Ulm-Type Classifications; Greg Hjorth, Alexander S. Kechris, Alain Louveau, Borel Equivalence Relations Induced by Actions of the Symmetric Group , 2001, Bulletin of Symbolic Logic.
[30] G. Hjorth,et al. The complexity of the classification of Riemann surfaces and complex manifolds , 2000 .
[31] Theodore A. Slaman,et al. Definable functions on degrees , 1988 .
[32] Greg Hjorth,et al. New dichotomies for Borel equivalence relations , 1997, Bull. Symb. Log..