New Directions in Descriptive Set Theory

I will start with a quick definition of descriptive set theory: It is the study of the structure of definable sets and functions in separable completely metrizable spaces. Such spaces are usually called Polish spaces. Typical examples are R^n, C^n, (separable) Hilbert space and more generally all separable Banach spaces, the Cantor space 2^N, the Baire space N^N, the infinite symmetric group S_∞, the unitary group (of the Hilbert space), the group of measure preserving transformations of the unit interval, etc.

[1]  Alain Louveau,et al.  A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .

[2]  Greg Hjorth,et al.  Classification and Orbit Equivalence Relations , 1999 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Benjamin Weiss,et al.  An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.

[5]  Calvin C. Moore,et al.  Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .

[6]  Edward G. Effros,et al.  Transformation Groups and C ∗ -algebras , 1965 .

[7]  J. Silver,et al.  Counting the number of equivalence classes of Borel and coanalytic equivalence relations , 1980 .

[8]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[9]  A. Kechris,et al.  The Descriptive Set Theory of Polish Group Actions: BETTER TOPOLOGIES , 1996 .

[10]  Simon Thomas,et al.  On the Complexity of the Isomorphism Relation for Finitely Generated Groups , 1998 .

[11]  Slawomir Solecki,et al.  Analytic Ideals , 1996, Bulletin of Symbolic Logic.

[12]  G. Hjorth Vaught’s conjecture on analytic sets , 1997, math/9712274.

[13]  Greg Hjorth,et al.  Borel Equivalence Relations Induced by Actions of the Symmetric Group , 1998, Ann. Pure Appl. Log..

[14]  Greg Hjorth Around nonclassifiability for countable torsion free abelian groups , 1999 .

[15]  Alain Louveau,et al.  The classification of hypersmooth Borel equivalence relations , 1997 .

[16]  R. Ellis Locally compact transformation groups , 1957 .

[17]  Simon Thomas,et al.  On the complexity of the isomorphism relation for fields of finite transcendence degree , 2001 .

[18]  Yiannis N. Moschovakis,et al.  Cabal Seminar 76–77 , 1978 .

[19]  T. Broadbent Abelian Groups , 1970, Nature.

[20]  Alexander S. Kechris Amenable Equivalence Relations and Turing Degrees , 1991, J. Symb. Log..

[21]  Benjamin Weiss,et al.  Ergodic theory of amenable group actions. I: The Rohlin lemma , 1980 .

[22]  Y. Moschovakis Descriptive Set Theory , 1980 .

[23]  Greg Hjorth,et al.  Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..

[24]  R. Dougherty,et al.  The structure of hy-per nite Borel equivalence relations , 1994 .

[25]  John R. Steel,et al.  Cabal Seminar 81–85 , 1988 .

[26]  A. Kechris Classical descriptive set theory , 1987 .

[27]  Alain Louveau,et al.  A note on Borel equivalence relations , 1994 .

[28]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[29]  Slawomir Solecki Review: Greg Hjorth, Alexander S. Kechris, Analytic Equivalence Relations and Ulm-Type Classifications; Greg Hjorth, Alexander S. Kechris, Alain Louveau, Borel Equivalence Relations Induced by Actions of the Symmetric Group , 2001, Bulletin of Symbolic Logic.

[30]  G. Hjorth,et al.  The complexity of the classification of Riemann surfaces and complex manifolds , 2000 .

[31]  Theodore A. Slaman,et al.  Definable functions on degrees , 1988 .

[32]  Greg Hjorth,et al.  New dichotomies for Borel equivalence relations , 1997, Bull. Symb. Log..